23rd Virtual IEEE Real Time Conference

Development of the Test-bench "Wukong" for adout Electropics and Pulse Digit

Readout Electronics and Pulse Digitizer

On behalf of

Lin Jiang, Jingjun Wen, Jingzhe Yang, Tianhao Wang, Xiaowei Guo, Zhi Zeng, Ming Zeng, Yang Tian, Jianfeng Zhou, Tao Xue, Jianmin Li

Department of Engineering Physics, Tsinghua University

Analysis of the Reasons for the Deterioration of ADC ENOB

The SNR of ADC is mainly caused by 3 parts, ADC the quantization noise of ADC, the thermal noise of ADC and sampling clock jitter. The total SNR of ADC is,

$$SNR_{ADC} =$$

$$-10 \lg (10^{-SNR_{Quantization-Noise}/10} + 10^{-SNR_{jitter-Noise}/10} + 10^{-SNR_{Thermal-Noise}/10})$$

The thermal noise contribution of the ADC and peripheral circuits is shown in the table below,

Section	Noise Contribution
AD5686R	53.32µV RMS (52.1µV RMS from internal
	reference)
AD8676+ADA4927	55.874µV RMS
AD9653	82.4µV RMS
Total	113.89µV RMS
AD9653 Channel A	129.39µV RMS
measured	

Without considering the clock jitter, the ENOB of the ADC can be estimated by the following 3 equations,

$$egin{aligned} V_{n_ADC} &= \sqrt{V_{ir}^2 + V_q^2} & V_q &= rac{Fullscale}{2^N}/\sqrt{12} \ ENOB &pprox \log 2igg(rac{Fullscale}{V_{n_ADC}\cdot\sqrt{12}}igg) \end{aligned}$$

Consequently, the maximum ENOB of the AD9653 is 12.13

The SNR_q is 98.08 dB while the SNR_t is 74.75 dB (ENOB = 12.13). Based on the above SNR_q and SNR_t , the effect of clock jitter on system ENOB could be calculated at different input sine wave frequencies

The three figures above show the ENOB for theoretical calculations and measurements at a frequency of input sine wave 10MHz, 30MHz, and 40MHz, respectively. The measured results agree well with theoretical predictions.