The mircoTCA.4 fast control and processing board for generic control and data acquisition applications in HEP experiments (#69)

Jie Zhang^{1,2}, Cong He^{1,2}, Aoqi Su³, Manhao Qu³, Wei Wei¹, Xiaoshan Jiang^{1,2}

1.Institute of High Energy Physics(IHEP), Chinese Academy of Sciences(CAS)

2. University of Chinese Academy of Science

3. Zhengzhou University

Motivation

- Finding new physics requires massive increase of processing power, much more flexible algorithms in firmware and much faster interconnects
- MicroTCA: high-level reliability, availability and maintainability.

Implementation

- u4FCP & uRTM for mid-sized system
 - Inside a MicroTCA crate
 - Clock, control, trigger and DAQ
 - or stand-alone on desktop with optical links or Ethernet to PC.
- FMC, DDR, PCIe, FireFly optical transceiver, WR, etc.

Build a mid-sized system inside a MicroTCA crate

Stand-alone to build an prototype of readout electronics

Applications

 The hardware has benefited from the multiple high-speed data links of FPGA, the u4FCP is adopted in the SHINE pixel detector. The prototype system was assembled with 12 channels and achieved a peak rate of 94 Gbps.