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High-Luminosity LHC (HL-LHC) @i, M

e Luminosity: indicate the performance of
an accelerator
* Proportional to: number of collisions

! . ; - 34 -2¢-1 -1
that occur in a given amount of time Run-2 2.1x10% cms 55 160 b
« higher the luminosity: the more data (4 years)
the experiments can gather HL-LHC (baseline) 5x 1034 cm2s1 140 3000 fb!
(10 years)
e Aim: to deliver a much larger dataset for HLLHC (ultimat 7 5 4 10% cm-2s:! 200 4000 fiy!
physics to the LHC experiments ] (ultimate) 0 X cm=s
(10 years)
9 Pile-up: Number of simultaneous pr0t0n' 202 202 202 202 202 2026 202 202 202
. " J|FIMAIM[]{] |A|S|ON|D{J |F|M|AM|] |] |A[S|O|N|D{J [F|M|AM|] |] |A|S|O[N[D{J |FIM|AM|] |J |A[S|ON|D{] |[FIM|AIM|] |J |A|S|O|N|D{J |FIM|AIM|] |J |A|S|ON|D{J |F[M|AIM|] |J |A|S|ON(D|J |[FIM|AM|] |J |A|S|ON|D|J |FIM|AM|] | ] |A|S|OIN|D|
proton interactions (~200)
« With high pile-up, need more | Run3 | ' Long Shutdown 3 (L53) |
advanced selection algorithms at L1 I
trigger
203 203 203 2033 203 203 203 203 203
JFMAMJJASO'NJDJiT‘IiA 13{]|A|SION|D|J [FIMAM[]|] |AISIO|N|D|] |[F|MIAIM|]|] |A[S|O|N[D{J |FIMAM|] |1 |A[S|OIN|D|J |FIM/AM|] | |AIS|OIN|D|] [FIM/AM[] | |A[S|OIN|D|J |FIM/AIM|] | ] |A[S|O|N|D{J |FIM|A[M|]|] |A|S|O[N|D|
* This increased datasets will help in the high ot ™ Runs |
precision measurements of:
J Standard mOdel (SM) §hutdownr<Tgchnical stop
rotons physics
* new territories beyond the SM (BSM) Commissloring with bearn
Hardware commissioning/magnet training

Fig: HL-LHC timeline
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CMS HL-LHC upgrade

* The CMS detector planned upgrade for the HL-LHC era:
* New pixel and strip tracking detector

* New high-granularity calorimeter (HGCAL) of the endcap

* New frontend/backend electronics for the:
* Barrel calorimeter
* Electromagnetic calorimeter (ECAL)
* Hadronic calorimeter (HCAL)
* Muon system
* Drift tube (DT)
» (Cathode strip chambers (CSC)

* 40 MHz Scouting system
* can be used to scrutinize the collision events and
identify potential signatures unreachable through
standard trigger selection processes

e L1 trigger:
* Inclusion of the tracker information
* Extensive usage of:

< IEEE

234 Real Time Conference

Summary of CMS HL-LHC Upgrades

Barrel ECAL/HCAL

* Replace FE/BE electronics

‘ Trigger/H LT/DAQ * Lower ECAL operating temp. (8 °C)

* Track information in L1-Trigger
¢ L1-Trigger: 12.5 ps latency — output 750 kHz
¢ HLT output 7.5 kHz

Muon Systems

| ® Replace DT & CSC FE/BE Electronics
¢ Complete RPC coverage in region 1.5<n<2.4
* Muon tagging 2.4<n<3

New Endcap
Calorimeters

* Rad. tolerant - high granularity
* 3D capable

New Tracker

¢ Rad. tolerant - high granularity —
significant less material

* 40 MHz selective readout (pT>2 GeV)
in Outer Tracker for L1 -Trigger

* Extended coverage to N=4

MIP Precision Timing Detector

¢ Barrel: Crystal +SiPM
® Endcap: Low Gain Avalanche Diodes

Fig: CMS detector HL-LHC upgrade

* large FPGA (Virtex UltraScale+/Kintex UltraScale)

* high-speed optical links (28 Gbps)
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L1 trigger principle

At design parameters the LHC produces:
» ~10° events/second in CMS detectors.
e eacheventis ~ 1 MB.

i.e. LHC experiments (ATLAS/CMS)

» ~100M channels
» ~1-2 MB of RAW data per measurement

...and really FAST o 1‘_
« 10° events/s x 1 Mbyte/events = 1015 bytes/s = 1 » ~40 MHz measurement rate (every 25 ns - @ the LHC)

PB/s (1 Petabyte/second)

* Problem:
* It is impossible to store and process this large
amount of data
e Solution:
e adrastic rate reduction has to be achieved
* Level-1: 40 MHzto 750 kHz
 High level trigger (HLT): 750 kHz to 7.5 kHz

- S . . . v /O
* Atriggeris designed to reject the uninteresting events acceptf reject

and keep the interesting ones for physics.

Fig: Trigger system
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e The HL-LHC L1 trigger receives input from the backend electronics

of:
° Calorlmete IS Calorimeter trigger Muon trigger Track trigger
* Muon spectrometers e —

* Track finder

Local

e Calorimeter trigger: (creating clusters from the energy deposited by

the particle in the calorimeter) e

Trigger

Global Calorimeter

* Regional calorimeter trigger (RCT) Trigger
« Barrel ECAL and HCAL
* Global calorimeter trigger Extemal Triggers |

Global

* RCT, forward hadronic (HF), and HGCAL

PF

|

Correlator Trigger

e Correlator trigger (CT) receives input from all the trigger sub-system:
« Aim: identifying and reconstructing all the particles with a
particle flow algorithm

Global Trigger GT

e Global tri gger. Phase-2 trigger project
* Aim: Issues the final L1 trigger decision
Fig: HL-LHC L1 trigger architecture
e Input rate: 40 MHz
* Increased output rate: 100 kHz => 750 kHz
* Increased latency: 3.8 pS => 12.5 uS
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TRACKING
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Fig: CMS Phase-2 L1 trigger design. Mentioning the time-multiplexing (TMUX) period, regional (RS) and functional segmentation
(FS), and the number of FPGAs for each architecture component.
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Technology R&D examples

* ATCA based electronics
* Generic high 1/0 (> 100) processing boards
* One ortwo Virtex UltraScale+/Kintex UltraScale FPGA from Xilinx

* Wide range of testing and prototypes
* Extensive link tests @ 28 Gb/s
 endurance test (< 10-12 BER) of the FPGA quads.
« Thermal performance test and simulation
* Heat sink test (in order to keep operating temperature
bellow 100°C)
* Algorithm firmware
* [nfrastructure firmware

BOARD FAMILIES

APx 25G quad eye scans

234 Real Time Conference
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APx Serenity

Heat sink
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Fig: APxF 25G eye scans, quads 121-135

25.78125 Gbps

Using pseudorandom
binary sequence
(PRBS31)

Clock and data recovery
(CDR) ON
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« The trigger algorithms are implemented by using Xilinx Vivado- e LN
. . + Timing (ns): 2 - a
HLS (high level synthesis) tool Csumary: o ) o -
* Rapid prototyping ol Wl Wi Wit | =1 (| sLrR2
« Codes are written in C++ et Wl SO ool TS —— "R
* HLS synthesizes the code to generate the RTL and * Latency (clock cycles): = ,
 Provide an early estimate of latency and resource ;";;;;;;;"j";;;;;;;,;7';,;%{;,;;7 R A
utilization %_'I‘_‘z;:L_T“f’;_T‘TTé%_T?f#_%__Y‘??___+ N
. g unction ,
 Increased ease of collaboration and code sharing for e T o AL ST - Ef l
algorithm design e 1
== 1Lizatwon stimates . : ; SLR1
* Summary: ;
*  Downstream: L Meme s o e | r v : |
« Integration of the algo with the firmware shell ( I e T T Ll
that provides i;ns‘tance i i 4982':’3 787553 ii
emory : - : - -
« MGT link instantiation Regster o 1 smel @ ]
« Timing and Control Distribution System (TCDS) ™ . O SO S S s
. |Available SLR 1440| 2280| 788160| 394080| 320
connectivity |Utilization SR (%) | o e o 20 ol SLRO
 DAQ support avaitabte T ;;ééT"'éé;éT";}ééiiééT"iiéii%@?:@%{ﬁ
 and an AXl interface to the controlling system L SRR S o
Uses HDL wrapper for integration (magenta box) S L e T — .
estimates of trigger algorithm Fig: Trigger algo device
Aim is to write HLS algorithms in a framework agnostic way implementation
A 28 July, 2022 Piyush Kumar & Bhawna Gomber | System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC ~ 8




Barrel calorimeter segmentation e
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Fig: Barrel calorimeter segmentation
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L1 Trigger Algorthms

Calorimeter Trigger

< IEEE

234 Real Time Conference

RCT geometry for the FPGA processing: 17nx4¢ of the barrel (total 36 APx cards)

Regional Calorimeter Trigger (RCT) creates electrons/photons energy clusters and towers and sends them to Global Calorimeter Trigger (GCT)

* The Xilinx UltraScale+ XCVU9P FPGA supports

...........................................................

3 super logic regions (SLR). “T:;W i
* For efficient implementation, the algorithm is o S iy et
partitioned SLR wise in 2 SLR (SLR2 and TEp L T
SLR 1) Calorimeler irigger 4 J; l o Latenoy: 220 CC+10 CC (accomodarted in accordance st
i s b § 4 Detector Backend systems 3 1 w‘\mté‘remmgmmmmmm . “» hvest
* RCTalgorithm is divided in three part i i g mn
* RCT8x4: BESE J R A et |
* |Implementedin SLR1 “ bkl | — . ) .h.hg
* Processes the 8n x 4¢ RCT e : region
regions T_.n
° only ECAL_ . ) ] e
. RCT9xa Fig: RCT algorithm organisation and dataflow Fig: ¢/gamma cluster
 implemented in SLR2 = Timing (ns) - Sumr\rl\;:z BRAM_18K DSPAS8E  FF | LUT |URAM making in RCT algorithm
* processes the 9n x 4¢ RCT = Summary DSP - - - - -
. " . Expression 0 24202
regions Clock Target Estimated Uncertainty o _ -
e ECAL ap_clk 417  3.491 1.25  Instance § 0 303544 464948 The implementation is
Memory - - f
* 16nx4¢ HCAL data. - Latency (clock cycles) Multiplexer - 16292 scalable for the region of
* RCTSUM = Summary ?Ztgallsmr ig 0 9;22; 50%32 0 17n*6 ¢ (can use 3
* implemented in SLR2 Latency | Interval uaable _ 4920 sbaosamoiteadg %0 G| Rs). RCT APx board will
° i 1 r . vailable 3
combines both the algorithm min max min max _Type Utlization (4 e e reduce from 36 to 24
and sends the output to the 230 230 &  6&function Utilization SLR (%) 2 0 41 128 0
GCT. . .
Fig: RCT algorithm HLS results
&
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RCT to GCT slice test

« The GCT algorithm (merging the energies
between the RCT cards in phi direction) is
synthesized in Vivado-HLS

 The RCT (SLR2 and SLR1) and GCT (SLRO) is
implemented together in XCVU9P FPGA.

* Tested on a single card:
* Replicate the 4 RCT output links x5 (20
input) ~ GCT processing 5 RCT cards

* Implementation details
 XCVU9P-FLGC2104-1-E FPGA
* Clock: 240 MHz
* Link bandwidth: 16 Gbps

23d Real Time Conference

buffered for twe

clock oyele +o

accomodate +he

routing delay of RETBr4 output
from SLR1 +o SLR2

RCT 36 ECAL links e
17 2 HCAL links RCTdx4 R
s | n & owtput algpritim £
= (processing STRCT cards)
4
i Lol T Lakeney: 22D CL +1D CC (accomodated in accordance
= t__, with RCTSi4 algorithm latency) _ 12 sutput
1 TS Iw
el e
in g 4 oiApill x5 20 npat o
- |
Er e
5| OJ Lateney: 230 CL £
| b‘-\ m 32 ECAL links RETE4 o
2 output algoritim F rosting delay From SURA o SR

SLR2 boundary
SLR1 boundary
SLRD boundary

Fig: RCTTDR and GCT algorithm implementation in three SLR

Performance Estimates Utilization Estimates

= Timing (ns) - Summary
Name BRAM_18K DSP48E  FF LUT |URAM
- Summary DSP - - - - -
. . Expression - - 0 1444 -
Clock| Target Estimated Uncertainty FIFO - - - - -
ap-clk 417 2.909 1.25 Instance - - 27703 146555 -
Memory - - - - -
-1 Latency (clock cycles) Multiplexer _ . . 56 -
Register 0 - 82036 36864 -
Summary Total 0 0 109739 184919 0O
Latency | Interval Available 4320 684023644801182240 960
min max min max  Type Available SLR 1440 2280 788160 394080 320
X Utilization (%) 0 0 4 15 ]
120 120 6  6function Utilization SLR (%) 0 0 13 4 0

Fig: GCT algorithm HLS results
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RCT to GCT slice test

* The bitstream is generated and the project passes
the timing constraints.

* Following are the algorithms device placement:
 RCT8x4: SLR1
 RCT9x4: SLR2
e RCTSUM: SLR2
 GCT:SLRO

* Post implementation device utilization is within
the boundary.

Bitstream is successfully tested on the APd1 (APx
demonstrator board) board
e Test vector generated via Monte Carlo
physics simulations for different physics
models.

Fo.x 1/(4.167-0.019) ~ 241 MHz

234 Real Time Conference

utilization Post-Synthesis | Post-implementation

Graph | Table

LUT A
LUTRAM
FF
BRAM
104
GT A
BUFG
MMCM
o 25  so 75 100
Utilization (%)
Timing Setup | Hold | Pulse Width
Worst Negative Slack (WNS): 0.019 ns
Total Negative Slack (TNS): 0ns
Mumber of Failing Endpoints: 0
Total Number of Endpoints: 1434128

Implemented Timing Report

Fig: Utilization and timing
summary (setup)

Fig: GCT device implementation
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M u 0 n tri gger <$IEEE 239 Real Time Conference

ku040 FPGA

*  The function of the muon trigger: T
Identification of the muon tracks i — ‘ . l
e  Measure momenta ! v e

25us +— Concentrator
stubs
—

OMTF EMTF

stubs |

* inputs in the form of muon stubs (32-64 bits each) asis + | T v o

Track ——
X=1 MUX=18
--=
i ux

Finder THIUK

« Inputs (stubs) are relaying through various Doy el
electronics regions: T LL S e
* Barrel: — ! | e
*  Drift tube (DT) ol jreer S
*  Resistive plate chambers (RPC) . |
* Endcap: Fig: Muon trigger architecture
e very forward extension iRPC
* cathode strip chambers (CSC)
e gaseous electron multiplier (GEM)
DSP FF LUTs BRAM

* Fullimplementation of the barrel algorithm
* Tested on small KUO40 FPGA 10% 17% 37% 46%
e Algorithm clock: 160 MHz

- BMT latency: 2.25 uS Fig: barrel algorithm implementation

Stubs: position, bend angle, and timing information of the muons
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Track trigger K

- - : SO bavs | fxavs loavs | fixavs i G 0r 4 Track triage
Global track trigger algorithm: | rack trigger

[ ]

e Aim:
* Reconstruction of the primary vertices

. : Whol
* Identify track-only objects = Implemented
algorithm in XCVU9P
* Uses 6 APx and 6 serenity board gtSRm one
Global Track
*  Primary Vertex (PV) Finding: Trigger
e Origin of tracks constrained to ~1mm
* Remove pileup to maintain manageable rates PRy
- T
* Track-Vertex Association: N W ] APxtw-shel ~
- Select tracks consistent with the PV T L SR [ Covo oo TS Vertex + TS
MET
*  Track-based Jet Finding: Single board, GTT framework + e
multiple algorithms
«  Track-based missing transverse energy (MET) i
*  Track-based Missing H;" DSP FF LUTs  BRAM Vertexing MET/Jets
Latency 540 ns 1530 ns

1% 11% 17% 21%

H; : scalar sum p; of jets

JS
K
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Correlator trigger

Correlator trigger layer-1 [
*  Aim: Collect information from ;

calorimeters/muon systems/tracker,
combine them

Correlator Trigger

e reconstruct the particles and
identify them.

*  Employs algorithms for:
e Particle Flow (PF) and Particle per

= o

pile-up identification (PUPPI) (barrel § 3%]’

+ endcap) g -

e Jets/Missing transverse energy & =
(MET)/ H;

* Taus, Isolation, NN MET,
electron/photon (egamma)

* Two layers:

e Correlator Layer-1: Performs full
PF+PUPPI create particle-flow
candidates

e Correlator Layer-2: use PF
candidates to reconstruct physics

objects Fig: Layer-1 endcap

@lEEE 234 Real Time Conference

*  Full working PF+PUPPI

e Barrel/endcap implemented using

VU9P-2

Vu9P DSP FF
Barrel 33% 36%

Endcap 24% 24%

Barrel

Latency 1120 ns

LUTs BRAM
46% 38%

30% 32%

Endcap

1030 ns
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Global trigger =K g ot e Conerence

Resource distribution.in GT algorithm board with 117 Algonthms Resource distribution in GT algorithm board with 234 Algorithms:

* Final stage of the Level-1 trigger W Famevork 8 Agorthms 18 Demutpeer + SLR dtruton + ot
*  Aim: responsible forimplementing - T “ -
the trigger menu wrne | (5 <50% urr o vy [ up to
oses [ \ 71%
e Based on serenity board - J .
« XCVU9P FPGA ! ! : ! s 0 ! 1 | I

* Flexible design:
* can be adapted for future
algorithms
« 480 MHz algorithm clock E—
Flexible
- Total latency of the GT Algorithm "
e ~250 ns (10 Bunch-crossing)
e Budget: 40 BX (1000 ns)
Fig: 39 algorithm placed in 1 SLR Fig: 78 algorithm placed in 1 SLR
(total 117 algorithms for 3 SLR) (total 238 algorithms for 3 SLR)
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Slice test

Track finder (backend) => Global track trigger (GTT)

 VU7P Apollo => KU15P Serenity test
* Apollo algo firmware: Final subcomponent of
track finder
« Serenity algo firmware: Vertexing algorithm
» Tracks sent over 18 links
* inputsisinjected into the buffers on Apollo
* Generated via CMS software (CMSSW)
e Qutputs is captured on the Serenity buffer

- v
. g
[ e
4 { !
s B .I
v { N ey
- I '
ol Tt =

« Compared with expectations: 100% agreement TIF crate (Apollo connected to Serenity)
Correlator layer 1 (Serenity) — Layer 2 (Serenity) FPGA FPGA
» Layer-1 algo input: HGCAL => jets Pt e o] P i
e Layer-2 algo output: electron/photon (egamma)

* 100% agreement with emulator

Software

.! O data /O data

Fig: Track finder and GTT board placement in the TIF crate

28 July, 2022 Piyush Kumar & Bhawna Gomber | System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC 17
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* Keytechnological choices to leverage the HL-LHC high data-taking environment: Serenity Serenitys
* High-speed optical links (from ~10 Gbps to ~28 Gbps) o ey
* Large FPGAs (from Virtex-7 to Xilinx Virtex UltraScale+/ Kintex UltraScale) l l l

* Modular and scalable algorithm firmware

» Several FPGA boards are being developed and various tests were performed,
such as:
* The links eye scan (@25 Gbps) and
» endurance test (< 10-12 BER) of the FPGA quads.
* FPGA thermal test to explore various heat sinks options.

= -
ke 3

|| | o

i gm

* Following trigger algorithms are being prepared and tested successfully on their
corresponding prototyped board:
 RCTand GCT
» Barrel muon trigger and global muon trigger (GMT)
* Global track trigger (GTT)

Report CERN-LHCC2020-004. CMS-TDR-021, CERN, Geneva,
Apr 147 2020. URL http://cds.cern.ch/record /2714892
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« Correlator Layer-1 and Layer-2 I f \
* Global track trigger X20 DTH Ethernet switch
Fig: L1 trigger crate installed at CERN that houses E
* The latency and resource utilization is well within the desired limit. three Serenity, X20, and DTH (DAQ and TCDS hub) board (for o
multi-board testing) E

All the testing/development is going in time with the HL-LHC schedule.
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_ _ Xilinx Stacked Silicon Interconnect (SSI) Technology
e The SSI technology integrate multiple Super

Logic Region (SLR) components placed on
a passive Silicon Interposer (fig 3).

High-Bandwidth,
Low-Latency Connections

e Each SLR contains the active circuitry common
to most Xilinx FPGA (Field programmable gate
array) devices. This circuitry includes large
numbers of:

e 6-input LUTs (Look-up tables)

* Registers

e |/0 components

\ Gigabit Transceivers (GT) b & 8§ 8 828 & 8 & & $ 8§ & &
« Block memory - .
e DSP blocks

e Other blocks

Microbumps

Through-Silicon Vias (TSV)

C4 Bumps

-+——— FPGA Die (SLR)
Silicon Interposer

Package Substrate

-+—— BGA Solder Balls
e The device we are using for our synthesis and
implementation is based on Xilinx SSI
technology and support three SLRs.
 Xilinx Virtex UltraScale+ xcvu9p flgc2104-

1-e FPGA *. UG872 Large FPGA Methodology Guide

Fig 3: Xilinx FPGA Enabled by SSI Technology*
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Barrel Calorimeter Segmentation (New)
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Fig 2: Barrel calorimeter segmentation (new)
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|LHC BC Qock [MHz) 40.08|

|Word Bit Size 66)

Iu-n Rate [Gbps) 1

Max Theoretical Words/Bx 6.0485

TM1 TM6 | TM18 |

Bx Frame Length (TM interval) 1 1 1 6 6 sI 18 18 18|
Words/Frame 4 5 6 24 30 36 72 90 108
Equiv. Words/Bx 4.00 5.00 6.00 4.00 5.00 6.00 4.00 5.00 6.00
Equiv. Bits/Bx 256 320 384 256 320 384 256 320 384
Data Rate [Gbps) 10.58 13.23 15.87 10.58 13.23 15.87 10.58 13.23 15.87
Filler Rate [Gbps] 5.42 2.77 0.13 5.42 2.77 0.13 5.42 2.77 0.13]
Average Filler Words/Bx 2.05 1.05 0.05 2.05 1.05 0.05 2.05 1.05 0.05
Average Filler Words/Orbit 730089 3736.89 172.89] 7300.89 3736.89 172.89] 7300.89 3736.89 172.89
Average Filler Words/Frame 2.05 1.05 0.05 12.29 6.29 0.29 36.87 18.87 0.87
Payload Bits/Frame 256 320 384 1536 1920 2304 4608 5760 6912
Algo Clock @ 64b i/f [MHz] 160.32 2004 240.48] 160.32 200.4 240.48] 16032 200.4  240.48|

sics bandwidth vs Algo clock @ 25G

LHC BC Cock [MHz] 40.08|
Word Bit Size 66|
Line Rate [Gbps) 25.78125|
Max Theoretical Words/Bx 9.74613|

TM1 TM6 | TM18 |
Bx Frame Length (TM interval) 1 1 1 6 6 6| 18 18 18|
Words/Frame 7 [ 9 42 48 54 126 144 162
Equiv. Words/Bx 7.00 8.00 9.00 7.00 8.00 9.00 7.00 8.00 9.00
Equiv. Bits/Bx 448 512 576 448 512 576 448 512 576
DataRate [Gbps] 1852 2116  2381] 1852 2116  2381] 1852 2116 2381
Filler Rate [Gbps] 7.26 4.62 197 7.26 4,62 197 7.26 462 1.97
Average Filler Words/Bx 2.75 1.75 0.75 2.75 1.75 0.75 2.75 1.75 0.75
Average Filler Words/Orbit 9787.22 6223.22 2659.22| 9787.22 6223.22 2659.22| 9787.22 6223.22 2659.22
Average Filler Words/Frame 2.75 1.75 0.75 1648  10.48 448] 4943 3143 13.43
Payload Bits/Frame 448 512 576 2688 3072 3456 8064 9216 10368
Algo Clock @ 64b i /f[MHz) 280.56  320.64 360.72] 280.56 32064 360.72] 280.56 320.64  360.72
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Project hierarchy and floor planning

apdl top 1149199

U_algoTopWrapper 74598011U_ApxL1TTop *** :ILF!Z
U_RCTAlgowrapper_0 372988 | st —
e FOA & o Sector-2 (20 Links) =——p ‘ |
: ector-2 (20 Links) | ’ <+— Sector-5 (20 Links)
—-o v Al ) GEG 3 j'.)|("h LA0, Janes
e e -
U RCTAlgowrapper 1 372988 Sector-1 16 Links) / Sector-4 (20 Links)
K ) _.. F ~ - _’.fv,l_vvl_: =
':“N'“.'*'m 3.}.”:.'1” oy ey
= Sector-0 (12 Links) === == Sector-3 (8 Links)

Fig 22: Project hierarchy in Vivado

Fig 23: Project floor planning
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APx Firmware shell

Link Clock Domain = Algorithm Clock Domain (async wrt LHC)
Iridis - 64b66b- :

. . F Link Align. TCDS TCDS
based optimized : [] Controler interlace [*
signaling method : P
and firmware Dynamc Recenf. :

Eye Scan, PRBS, . : DAQ tap AXI4
link tuni - nput
cores for CMS L L : Capture S
& Playback go Cfg
. DRP AXM4
- RAM
Trigger :
applications : Algorithm |
RX Link MGT RX 5 > o AXl-Stream 5 AXI-Stream Block
> Hard Core 64b66b Iridis Rx
(w/ AP FIFO)
RX link clk P 4 Algo clk "
: Programmable
E: ? | Clock Generator Output
. Capture/
: Playback
- RAM
TX Link MGT TX < 5 AXIS[lroam (
< Hard Core Iridis Tx N ?
— (w/ AP FIFO) L AXiStroam
> [ e hd
TX link clk <
MGT s
FW Instantiation .
P N R aR a0 v
i Note: The APx firmware shell will support decoupling of DAQ tap

algorithm clock from link or LHC clock and thus
significantly relax algorithm timing constraints
(Vivado HLS) and optimize algorithm latency.
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X
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APx test

| 25G Endurance Tests

= Using both Firefly
25X12 Alpha module
sets

= 515.625 MHz refclk
frequency (zero rem.)

= All 124 paths tested to
> 1E14 bits of PRBS31
data with zero errors

= Some tweaking of fiber
connections necessary
for 25X12 modules

THERMAL PERFORMANCE (APX)

+At 16 W/cm a 12.5cm heatsink provides 200W of cooling potential -
assuming no significant ducting of air within the card

+APxF has 3.4 W/C heat sink performance so 200W load will increase
temperature by 59 degrees (25C to 84C) with cooling at full power

«Observations:
«200W FPGA power limit feasible at full fan power

«Care required when balancing design tradeoffs - e.g. heat sink dimensions
vs MGT route length

eLower die temperature -> capacity to reduce fan speed

HL-LHC

\

Designing to maximize slot airflow utilization

ANENENNN 056

HL-LHC

XILINX=

VIRTEX.

Unrascalet ™

JATCA Cooling, APXF Example

Low restriction airflow path to FPGA
heat sink

VU13P FPGA Heat Sink
12.5%x12.5 cm, 16% fill fin pattern
Measured 3.4 W/°C (0.29 °C/W) at
full 450 Watt fan power (lidded
A2577 package)

Significant airflow obstructions

Optical module heat sinks located
for pressure balance

FPGA exhaust heat zone

~IVU13P Lidless Package Option

= Xilinx Data for A2577 © . (die to case):
FLGA (lidded): 0.05 °CW
FSGA (lidless): 0.01 °C/W

= At 200W, up to AT = 8 °C savings
versus the lidded package

= Comments:

= Lidless interface a more exacting design—APXx
has a lidless heat sink design on file

= Would optimize other thermal design aspects
first (board layout, heat sink geometries)

= When a device is operating near the thermal
limit, small °C improvements - a large %
increase in thermal margin
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Serenity tests
THERMAL PERFORMANGE (SERENITY)

«Explored using heat pipes and vapour
chambers to allow "small" heatsinks

«Vapour chambers allow 200W dissipation
with expected fan speed 10 of 15 with
90mm x 90 mm heatsink (i.e. compact)

FPGA temperature [C]
wv (o)}
o o

C) Al-Fins HeatPipes 2 185x185 s’
base: 4

. nn
height-12.7 mm 40 4

o]
o
1

~
o
1

e C) Al-Fins HeatPipes 2
e B) Al-Fins HeatPipes
H) Cu-Fins w/o base
e A) Aluminum fins
e : D) Copper pins
e A)+l) Al-fins + Vapour Chamber
e H)+I) Cu-fins + Vapour Chamber

LD ]

Extrapolations to 100C
c) 105
| B) 136
H) 141

A) 143
| D) 157|
A)+I) 163

H)+I) 203

40 60 80 100 120 140 160
FPGA power @ DCDC [W]

-~

«See large variation depending
on heatsink

«Want to keep FPGA temperature
at 100 degrees or lower

AS
&% 7-6-%
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