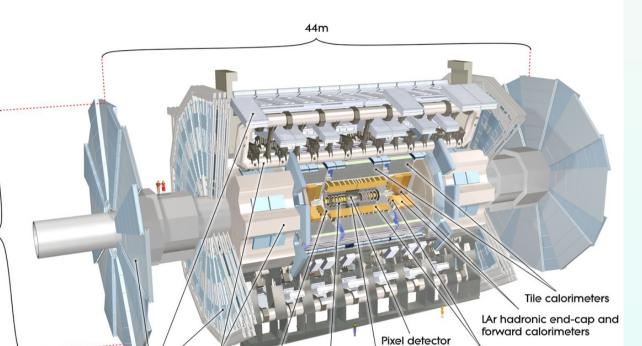
Software based readout driver evolution towards 1 MHz readout as part of the ATLAS HL-LHC upgrade

Serguei Kolos, University of California Irvine, USA

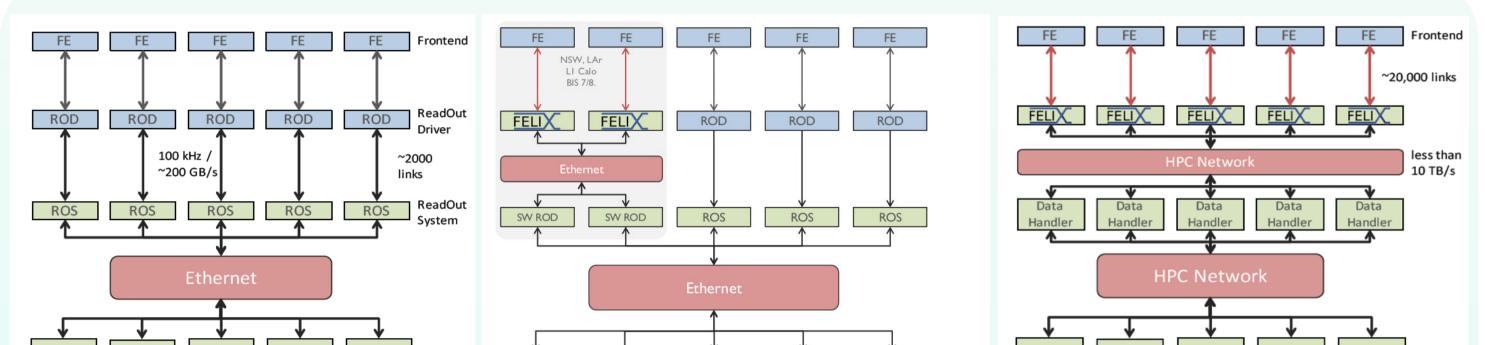
on behalf of the ATLAS TDAQ Collaboration


1. LHC Performance and ATLAS Evolution

얽

ATLAS is one of the four major LHC experiments.

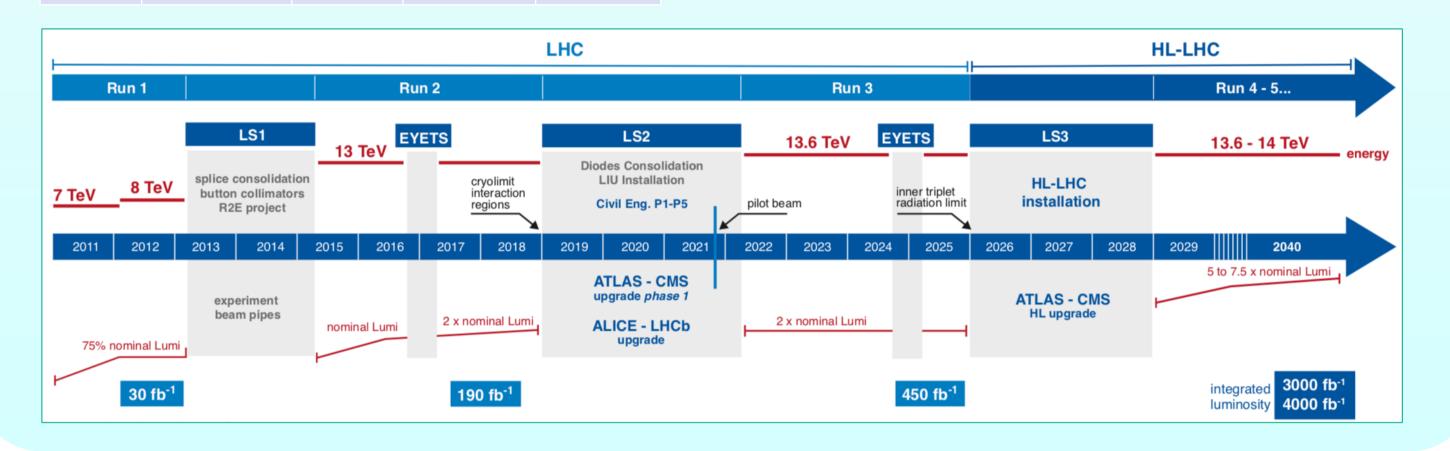
ATLAS is the largest detector ever constructed for a particle collider: 44 meters long and 25 meters in diameter


More than 100 million sensitive electronics channels are used to record the particles produced by LHC collisions.

2. ATLAS Trigger/DAQ System Evolution

HLTPU

HLTPU

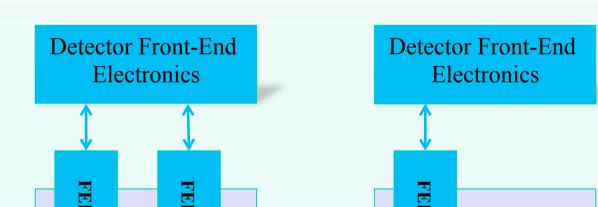

LHC Performance evolution

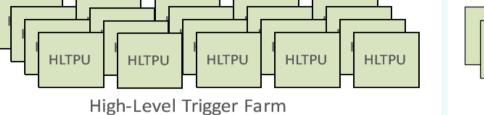
	Period	Energy [TeV]	Peak Lumi [10 ³⁴ cm ⁻² s ⁻¹]	Peak Pileup
Run 1	2009 - 2013	7 - 8	0.7	35
Run 2	2015 - 2018	13	2	60
Run 3	2022 - 2025	13.6	2	60
Run 4+	2029 -	13.6 - 14	5 - 7.5	140 - 200

Toroid magnets ansition radiation tracke Muon chambers Semiconductor tracke

ATLAS Trigger/DAQ system evolution mainly driven by the evolution of LHC performance.

High Luminosity LHC upgrade after Run 3 will require a major upgrade of the ATLAS TDAQ system




25m

3. FELIX & SW ROD Readout for Run 3 & 4

New Readout system is based on a custom PCIe card called FELIX

Run 1 & 2

Readout Drivers (RODs) provide interface between Front-End (FE) and DAQ:

- VME boards developed and maintained by detectors
- Connected via point-to-point optical link to a custom to custom PCI/PCIe I/O cards (ROBIN/ RobinNP)
- I/O cards are hosted by Readout System (ROS) commodity computers
- ROSes transfer data to the High-Level Trigger (HLT) farm via a commodity switched network

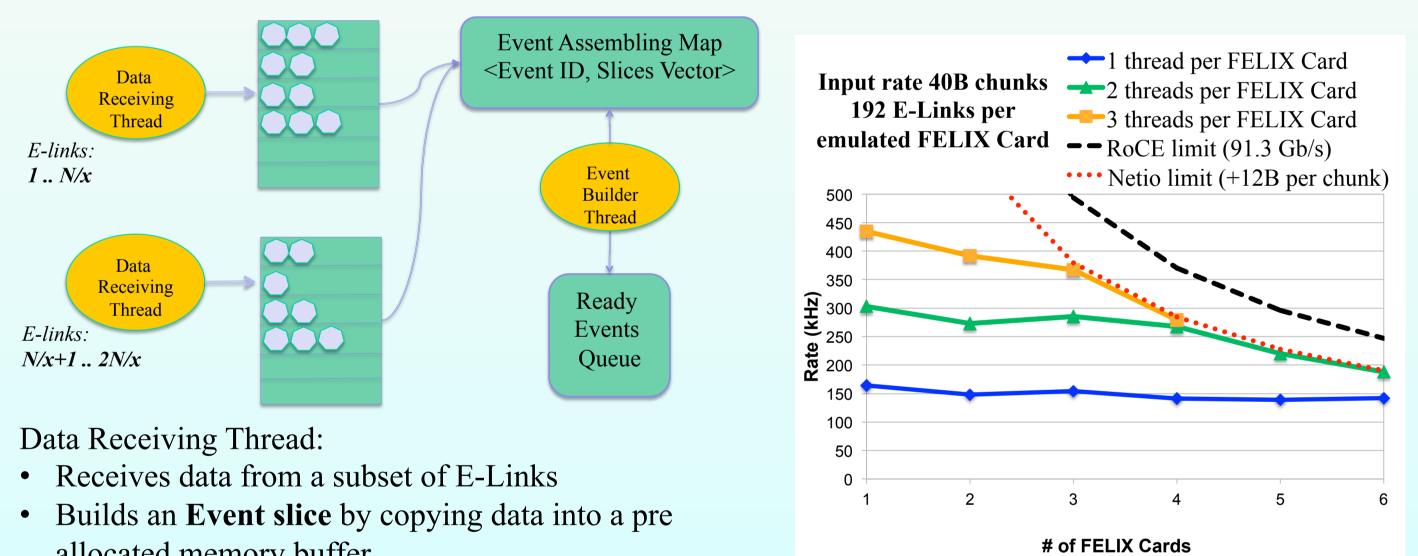
HLTPU

HLTPU

HLTPU

ATLAS uses a mixture of the legacy and new **FELIX**-based readout systems

- **FELIX** is used to read out the Muon New Small Wheel detector, upgraded Barrel RPCs; new Liquid Argon calorimeter digital readout and Level 1 calorimeter trigger.
- A new component, known as the **Software Readout Driver (SW ROD**) has been developed:
- Receives data from FELIX
- Supports the legacy HLT interface



Run 4

New readout architecture is based on the **FELIX** system:

- New **Data Handler** is an evolution of the **SW ROD**
- **Data Handler** has the same functional requirements as **SW ROD**
- Performance requirements are substantially higher than for Run 3:
 - 1 MHz L1 rate (10x)
 - 4.6 TB/s data readout rate (20x)

4. SW ROD Event Building Algorithm Performance for Run 3

Run 3 version of the FELIX I/O card is a custom PCIe board with Gen 3 x 16 interface installed into a commodity computer:

• Up to 48 optical input links

Can be operated in several modes:

GBT Mode:

- 4.8 Gb/s per link input rate
- Each link can be split into multiple
- logical sub-links (E-Links)
- Up to 192 virtual E-Links per card
- Up to 9.6 Gb/s per link input rate • No virtual link subdivision

• 12 links at full speed for Run 3

• 24 links at full speed for Run 4

FULL Mode:

Commodity PC Commodity PC Network Switch SW ROD/ SW ROD / Data Handler Data Handler Application Application Commodity PC Commodity PC

→ 384 e-links (48 B)

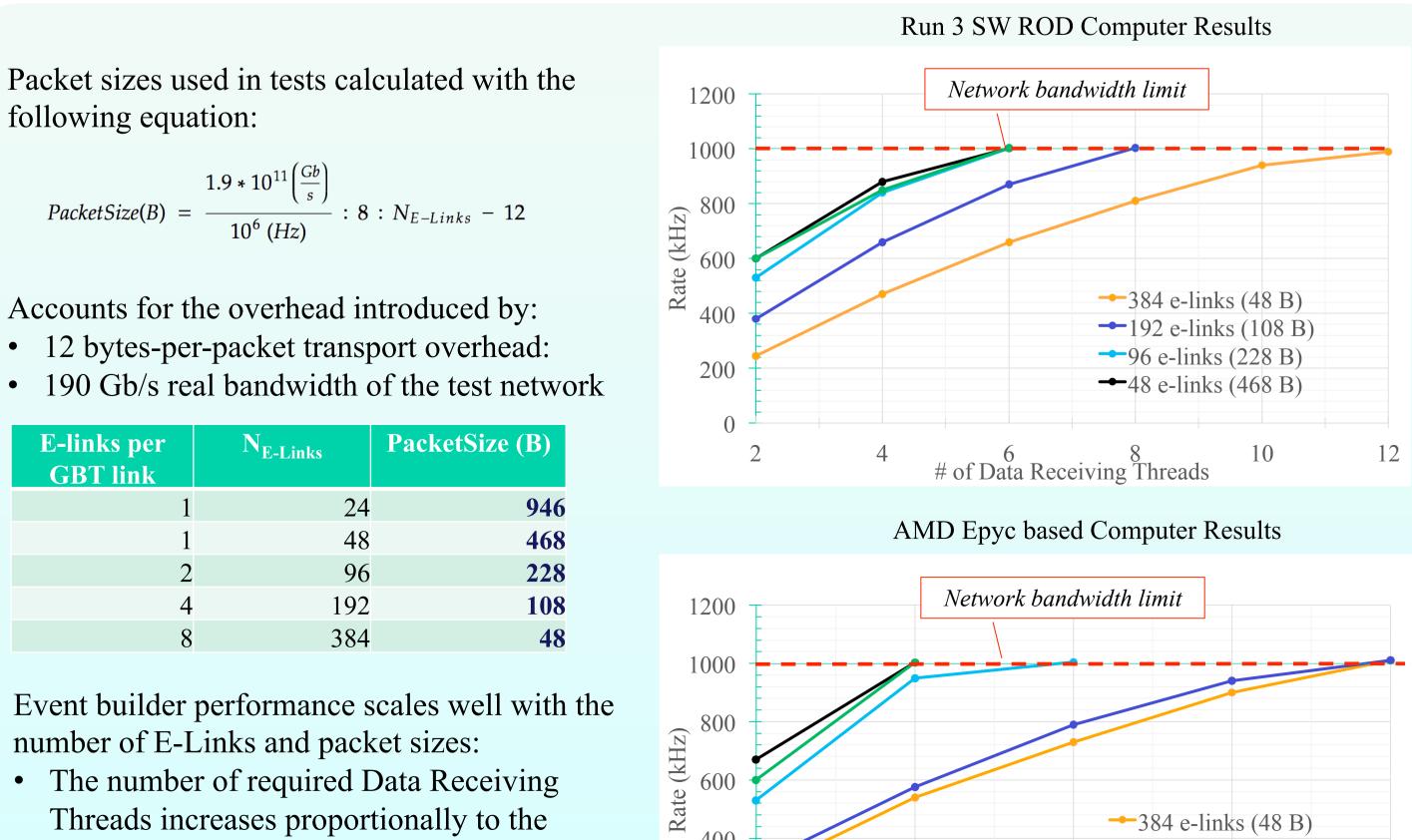
→192 e-links (108 B)


→96 e-links (228 B)

←48 e-links (468 B)

←24 e-links (946 B)

of Data Receiving Threads


10

- **IpGBT** is a new protocol for Low Power Gigabit Transceiver device that can transfer data at 10.24 Gb/s input rate
- Interlaken is a point-to-point protocol that support 25 Gb/s input rate

Run 3 Performance Requirements			Run 4 Performance Requirements								
	Packet Size (B)	Packet Rate per Link (kHz)		Packet Rate per card (MHz)	Data Rate (Gb/s)			Packet Rate per Link (kHz)		Packet Rate per card (MHz)	Data Rate (Gb/s)
GBT Mode	40	100	192	19.2	6	GBT Mode	64	1000	384	384	196
FULL Mode	5000	100	12	2.4	50	FULL Mode	1024	1000	24	24	192

6. Run 4 Performance Test Results

400

200

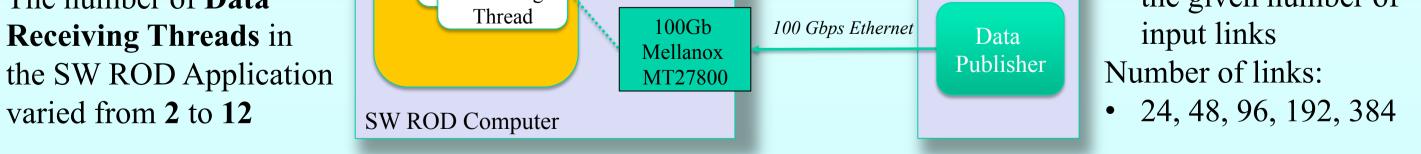
- allocated memory buffer

Data Receiving Threads are almost independent:

• Interaction happens when completed **slices** are inserted into the Event Assembly Map, through which complete Events are built

Event building rate scales almost linearly with the number of Data Receiving Threads

5. Run 4 Performance Test Setup


To verify how the Run 3 implementation of the SW ROD scales towards Run 4 requirements a dedicated testbed has been set up. Two server models have been tested:

Option #1: Run 3 SW RO	OD Computer	Option #2
 Dual Intel(R) Xeon(R) Go L1d cache: 32K, L1i ca L2 cache: 1024K L3 cache: 22528K 96 GB of RAM 	old 5218 CPU @ 2.30GHz (16x2 cores) ache: 32K	 AMD Epyc 7313P @ 3GHz (16 cores): L1d cache: 32K, L1i cache: 32K L2 cache: 512K L3 cache: 32768K 128 GB of RAM
Data Receiving Threads berform event building: Aggregate incoming data chunks into events The number of Data	Data Data Data Receiving Thread	Data Publisher Data Publisher Data Publisher Data Publish data chu of the given size the given numbe

- 12 bytes-per-packet transport overhead:
- 190 Gb/s real bandwidth of the test network

E-links per GBT link	N _{E-Links}	PacketSize (B)
1	24	946
1	48	468
2	96	228
4	192	108
8	384	48

- The number of required Data Receiving Threads increases proportionally to the number of E-Links
- The overhead produced by thread synchronization is insignificant

7. Conclusion

The High-Luminosity Large Hadron Collider (HL-LHC), expected to enter in operation in 2029, aims to increase LHC luminosity by a factor of 10 beyond its original design.

The new Readout system for the ATLAS experiment is based on the Front-End LInk eXchange (FELIX), introduced for some detectors in Run 3. A new component, called the SW ROD, has been developed to receive data from FELIX.

The Data Handler component of the Run 4 DAQ system will be an evolution of the SW ROD, that will support the same functional requirements but must be able to operate at an input rate of 1 MHz to cope with the HL-LHC luminosity.

Performance testing to date demonstrates that the Run 3 SW ROD application is able to process data at 1 MHz rate for realistic Run 4 input configurations.

It is expected that single CPU core performance should increase by at least 50% in the next 5 years, which will provide extra computing power and decrease overall system cost.