**Preliminary Study on Timing Characteristics of Fast SiPMs** 

Dong An<sup>1</sup>, Peng Hu<sup>1</sup>, Min Yan<sup>1</sup>, Lishuang Ma<sup>1</sup>, Sen Qian<sup>1</sup>

<sup>1</sup>Institute of High Energy Physics, Chinese Academy of Sciences

# **1.Introduction**

- Fast Silicon Photomultipliers (SiPMs) feature fast response and excellent time resolution (rise time ~  $10^2$  ps, time resolution ~  $10^1$ ps), showing great application potential in high energy physics, nuclear medicine instruments and space astronomical detection, etc.
- A fast-timing amplifier circuit board based on OPA855 has been designed, which was used to evaluate time performance of three  $\bullet$ types of SiPM (NDL, Hamamatsu and SensL)
- This preliminary study aims to promote the implementation of the Analog Hadronic Calorimeter (AHCAL) scheme based on SiPM readout in the Circular Electron Positron Collider (CEPC)

### 2. Design of fast-timing characteristics amplifier circuit boards

- OPA855 broadband, low-noise operational amplifier with bipolar inputs for broadband transimpedance and voltage amplifier applications
- A TINA-TI simulation was used to design the amplifier circuit board  $\bullet$



Schematic diagram of Simulation with OPA855 amplifier



Simulated input and output waveform



Simulated and measured parameter values for this designed amplifier board

| Parameters         | Gain | Noise<br>[mV] | Bandwidth<br>[MHz] | Power<br>[mW] |  |
|--------------------|------|---------------|--------------------|---------------|--|
| Target Value       | 10   | 1             | 1000               | 50            |  |
| Simulated<br>Value | 10.3 | 0.5           | >1000              | 40            |  |
| Measured<br>Value  | 10.5 | 0.8           | >1000              | 45            |  |

### **3.** Timing characteristics test of fast SiPMs

LD (400 nm) driven by a picosecond signal generator; sampling with HD



Limited time resolution of NDL 11-3030C-S, Hamamatsu S13360-1325CS and SensL J-30035 (fast output port) were measured



- oscilloscope (sampling rate 40 GS/s, bandwidth 4 GHz)
- Scanning the time resolution, here denoted as transition time spread (TTS), at different operating voltage to get optimized value
- The time resolution improves as ouput amplitude (i.e. light intensity) increases, and limited time resolution can be obtained





\* The fast output port (F-OUT) of SensL J-30035 is designed for better time performance



Limited Time



~ 193.6

65.87 / 64

213.9 ± 3.8

## **4.**Conclusion

- A fast-timing amplifier circuit board based on OPA855 operational amplifier was designed, which is compatible with the SiPM from NDL, SensL and Hamamatsu and facilitate the time characteristic test
- Based on the designed amplifier, an excellent time resolution of  $\sim 20$  ps can be obtained for NDL and SensL SiPMs, and the rise time can be as good as 0.5 ns for SensL SiPMs, having great potential in timing measurement.

#### Reference

[1] M. Yan et al., "Preliminary Study on the Timing Characteristics of a Fast SiPM for the TOF of the Beam Line in IHEP," in IEEE Transactions on Nuclear Science [2] CEPC Study Group. (2018). CEPC Conceptual Design Report: Volume 2-Physics & Detector. arXiv preprint arXiv:1811.10545.

23rd IEEE Real Time Conference