PGNAA SPECTRAL CLASSIFICATION OF METAL WITH DENSITY ESTIMATIONS

Helmand Shayan^a

Kai Krycki^b

^aInstitute Industrial IT, OWL University of Applied Sciences and Arts, Lemgo, Germany ^bDepartment of Mathematical Methods & Software Devolopment, AiNT GmbH, Stolberg, Germany

MOTIVATION

- For environmental, sustainable economic and political reasons, recycling processes are becoming increasingly important.
- For the copper and aluminum industries, no method for the nondestructive online analysis of heterogeneous materials are available.
- The Promt Gamma Neutron Activation Analysis (PGNAA) has the potential to overcome this challenge.
- We aim to fill technology gap by presenting the approach of real-time classification of metal alloys by PGNAA as a novelty. This approach has not been used by anyone before.

THE IDEA OF OVERALL PROCESS (SCHEMATICALLY)

- (1) The scrap is irradiated with a beam of neutrons.
- (2) Through nuclear reaction, the material emits prompt gamma rays, which are measured with a gamma ray spectrometer.
- (3) The data of measured gamma spectra can be saved/visualized and
- (4) classified using an algorithm.
- (5) After classification, the material can be recycled purposefully.

We deal with point (3) (Data generation) and point (4) (Data classification).

Marco Doemeland^b

Markus Lange-Hegermann^a

23rd Virtual IEEE Real Time Conference, 1–5 August 2022

METHOD

Data generation

- pirical probability.
- (2) Sample short-time measurements (e.g. \setminus 1 s) from this distribution.

Data classification

- the distribution using the kernel density estimator.
- the maximum (log-)likelihood method.
- trum:

where s stands for the unknown short time measurement and S_i for a completely measured spectra.

only estimated peaks.

RESULTS

		Cu_1	Cu_2	Cu_3	Cu_4	Cu_5		AJ_1	Al_2	Al_3	Al_4	Al_5
	Cu_5 -	0.00	0.00	0.00	0.00	1.00	AI_5 -	0.02	0.00	0.01	0.00	0.97
5	Cu_4 -	0.00	0.00	0.00	1.00	0.00	AI_4 -	0.00	0.00	0.00	1_00	0.00
ne lab	Cu_3 -	0.00	0.00	1.00	0.00	0.00	AI_3 -	0.00	0.00	1.00	0.00	0.00
υ	Cu_2 -	0.09	0.91	0.00	0.00	0.00	AI_2 -	0.00	1.00	0.00	0.00	0.00
	Cu_1 -	0.90	0.10	0.00	0.00	0.00	AJ_1 -	0.99	0.00	0.00	0.00	0.01

SUMMARY

- method.

• First, for each of completely measured materials' spectra we obtain

• To assign an unknown short time measurement to a material, we use

• The maximum (log-)likelihood method assigns the short time measurement to the most fitting distribution of a fully measured spec-

 $\max \log(p(s|S_i)),$

• The classification uses the whole information of the spectrum and not

• Five different standard aluminum and copper alloy were measured in a demonstrator measurement system.

• The following confusion matrices show the classification results of copper (Cu_1, ..., Cu_5) and aluminum (Al_1, ..., Al_5) alloys with measurement time of 0.5 s. and 0.25 s respectively.

• Different materials (E-scrap, cement, stucco, aluminum, melamine, ASILIKOS, PVC, soil, batteries, ore, copper) can be classified to 100 % by a measurement time of 0.0625 s.

• CNN need about 10 times longer for similar results.

• The goal of online classification can be achieved for recycling processes using the kernel density estimator and the maximum likelihood

• We can classify faster than a CNN and only need a single fully measured spectrum of the material as training data.

• We don't need data preprocessing and additional training data.

• We have introduced a simple and fast method for simulating an unlimited number of different short- and long-term spectra.