
Upgrade of the MUCTPI
The MUCTPI upgrade is part of the overall upgrade of ATLAS on the road to High-Luminosity

LHC and is in line with the development of the New Small Wheel of the muon trigger system

installed before Run 3. The new MUCTPI uses optical links to replace bulky electrical cables.

Those links allow the muon trigger detectors to send more muon candidates with more precise

information. The new MUCTPI provides improved overlap handling and full-precision information

to the Topological Processor. The new MUCTPI is built as a single ATCA blade. It receives 208

optical links and uses two FPGAs for the overlap handling, counting of muon candidates, and

sending candidates to the Topological Processor. A third FPGA provides the total count of muon

candidates to the CTP, and readout data to the data acquisition system. A System-on-Chip (SoC)

provides hardware control of the new MUCTPI and integrates it into the ATLAS run control

system.

Observations
• Multiple git projects are handled by using git submodule.

• Multiple variants for firmware/software are handled by using gitlab variables.

• The jobs of building are selected using gitlab variables. A python script was developed to select

all variables and to trigger a pipeline using the HTTP API interface.

• A service account and credential stored in gitlab secret variables is used to read/write from

protected repositories and file systems.

• Artifacts are exchanged between jobs, as well as for deployment for local developments, using

different file systems: local file system, AFS, or NFS.

• Gitlab documentation was found to be well written; many features that were needed, could be

found easily by searching.

Open Issues
• Explore other file systems: better exchange between jobs, better integration with local

development.

• Check/parse results, in particular, for the firmware building, i.e. analyse timing results.

• Automatically test firmware and software, possibly on a dedicated test system.

• Evolve the building of firmware and software with newer versions of the tools, i.e. Vivado (Vitis)

and PetaLinux.

CI Workflow

Firmware and Software of the MUCTPI are built using a multi-layer workflow:

 Local build: every developer works on a branch of any of the git projects.
Firmware and software are built and tested locally. When found satisfactory,
the git branch is merged into master.

 Nightly builds rebuild all firmware and software every night. Firmware building
takes around 6 hours, software building, only for MUCTPI-specific software,
takes around 20 minutes. All resulting firmware bitfiles of the firmware and the
software are deployed to all host systems. They can be used from the next day
on for new local building and testing.

 When all people involved in the development decide, or e.g. the ATLAS TDAQ
software changes, a new release is built, and the software deployed to all
hosts. The release becomes the new base for the nightly builds.

ATLAS Experiment 
@ LHC
The ATLAS experiment is a general-purpose

experiment at the Large Hadron Collider (LHC) at

CERN. It observes proton-proton collisions at an

energy of almost 14 TeV and a bunch crossing (BC)

rate of 40 MHz. Up to 52 pile-up collisions are expected

for Run 3, which started in 2022. This results in more

than 2*109 interactions per second and requires the

use of a trigger system in order to select those events

which are interesting to physics and which can be

recorded to permanent storage at a reasonable rate.

The ATLAS trigger system consists of a Level-1 trigger

based on custom electronics, which reduces the event

rate to a maximum of 100 kHz, and a high-level trigger

system based on commercial computers, which

reduces the event rate to around 1 kHz.

CI Pipelines
CI pipelines run on gitlab runners, which are installed

on the PCs used for the continuous integration.

The gitlab runners for a given pipeline are selected

using tags to identify their features, e.g. where the

Xilinx Vivado suite is installed, etc.

Docker images are used to make the building

independent from the PC they are running on, e.g. for

using the Xilinx PetaLinux tool, or the target root file

system and the cross compiler.

Pipelines are triggered by a git action (e.g. commit), on

request (i.e. using the web browser), by using the

HTTP API (a script was developed, which allows to set

all variables and to run a pipeline), or by using a

schedule (e.g. nightly).

Summary
Continuous integration greatly improves collaborative and combined development of firmware and software. We are planning to extend the use of continuous integration in the current and in future projects.

IEEE RT 2022 - 1-5 August 2022 – R. Spiwoks, CERN

The new MUCTPI Module

Y. Afik, P. Czodrowski, S. Haas, A. Koulouris, A. Kulinska, A. Marzin, T. Pauly, O. Penc, S. Perrella,
V. Ryjov, R. Spiwoks, L. Sanfilippo, R. Simoniello, P. Vichoudis, T. Wengler, M. Wyzlinski

CERN, Switzerland

System-on-Chip

Level-1 Trigger System
The first-level trigger uses reduced-granularity information from the calorimeters and
dedicated muon trigger detectors. The trigger information is based on multiplicities
and topologies of trigger candidate objects. The muon trigger is based on several
dedicated muon trigger detectors in the barrel and endcap regions. The Muon-to-
Central-Trigger-Processor Interface (MUCTPI) combines the muon candidate counts
from both regions, taking into account double counting of single muons that are
detected by more than one chamber due to geometrical overlap of the muon chambers
and the trajectory of the muon in the magnetic field. The MUCTPI sends the muon
candidate information to the Topological Processor and the muon counts to the Central
Trigger Processor (CTP), which combines the trigger information from the calorimeter
trigger, the MUCTPI, and the Topological Processor in order to make the final Level-1
decision.

Firmware/Software Stack

Firmware is required for the Muon Sector Processors (MSPs), the Trigger and
Readout Processor (TRP), as well as for the programmable logic of the control SoC.
The firmware is required for three different prototype versions of the MUCTPI.

The software for the processor system of the Control SoC comprises:

• Boot software: first-stage boot loader (FSBL), U-Boot, Linux kernel, and devicetree;

• Operating System: CentOS 7 for armv7 (Zynq) and aarch64 (ZynqMP);

• Cross Compiler: gcc 8 and gcc 11;

• User Application Software: ATLAS TDAQ software & MUCTPI-specific software.

Continuous

Integration (CI)
In the MUCTPI project there are several developers
concurrently developing firmware and software,
using multiple tools, for a number of different
hardware and software architectures. Continuous
integration is the practice of automating the
integration of code changes from multiple
developers into a software project. The advantages
are multiple:

• Automate build processes that used to be done
manually.

• Identify early any changes that break the
software building, and other bugs.

• Scripts provide a kind of documentation on the
build process.

• Adapt more easily to new or changing
requirements and software.

• Provide continuous deployment with latest
versions to all host systems.

Git projects are being used for the firmware and
software; they are stored on CERN’s centrally
hosted gitlab services. It was therefore natural to
use gitlab Continuous Integration for the building of
the firmware and software.

CI Configuration
Gitlab CI is configured by using YAML scripts, which define how the firmware/software is to be built:

• The different stages of the building are defined; a stage is executed in a job; several jobs make up
a pipeline.

• Gitlab variables are used to decide what is to be built; firmware and software for the different 
FPGAs and SoC and the prototypes of the MUCTPI need to be built.

The ATLAS Trigger and Data Acquisition System

Architecture of the MUCTPI showing where Firmware and Software are used

Excerpt of a gitlab CI Configuration Script

Example Pipeline for rebuilding MUCTPI Software

CI Workflow used for MUCTPI

FPGAs

XML files containing the description of the
hardware registers and memories are
used with a code generator to produce
VHDL for the firmware, as well as C++ for
the user application software. Common hardware description used 

to generate firmware and software

• Gitlab variables are also used 
to decide what part of the 
build process (job) is to be to 
run, e.g. the operating system 
and the boot software do not 
need to be rebuilt every time, 
while the user application 
software needs to be rebuilt 
every time.

• Gitlab secret variables are 
used to store login credentials 
for a service account; this 
allows the use of common 
repositories and file systems.

• Gitlab CI is also used to 
deploy the resulting bitfiles of 
the firmware and all the 
software to all the host 
systems.

MUCTPI


