

DIGITAL OSCILLOSCOPE-BASED ACQUISITION FOR FAST AND DYNAMIC SAMPLING OF PHOTO DETECTOR SIGNALS

Cao Van Son¹, Truong Thanh Sang^{1,2}

¹Institute For Interdisciplinary Research in Science and Education, Quy Nhon, Vietnam ² Viet Nam National University - Ho Chi Minh city University of Science

Abstract: A digital oscilloscope can trigger with a mV threshold, digitalize analog signals with 500Mhz sampling in a dynamic timing window, and acquire several channels in a fraction of a second. These characteristics provide oscillsocope a distinct advantage when working with small or medium-sized setups that require photosensor signals to be acquired lightning fast. We created a system to study cosmic muon decays using SiPM and plastic scintillators, as well as another using optical fibers and PMT to monitor proton beam loss at the J-PARC neutrino beamline. We will discuss our experiences with these developments

Two main physical objectives

- Use plastic scintillator, wavelength shifting fiber, and SiPM (4 channels).
- No use of amplifier, shaper or coincidence unit, faint signal with few 10mV pulse height, single photoelectron (p.e) < 1 mV.
- Prompt signal: \sim ns few ns; delay signal (for $\mu \to e \ decay \ signal$): few us to few 10s of us.
- Unknown timing trigger.
- Rate (depending on detector size), but mostly designed for ~ 1 Hz operation.
- Optical-fiber -based + Metal-package PMT (also SiPM) in highly radioactive environment; 3 channels + 1 for external trigger.
- Basically known timing trigger; sometimes use self-triggering for unknown loss source
- Proton bunch structure: $(60ns/bunch\ width\ +\ 600ns\ bunch\ gap)$ x 8 bunches with 1.36s cycling.
- Wide dynamic range in both pulse height and sampling interval.

Oscilloscope-based DAQ is found as a cost-effective all-in-one solution with numerous features: intelligent trigger, fast sampling (500 Mhz or more); wide-dynamic range in term of the pulse height (from sub-mV to few V) and sampling window (from $\sim ns$ to few ms), portable, programmable, and remote-controlled.

Two DAQ modes and capture rate

photodetectors, with varied frequencies

(a) Function generator to generate pulsed signal, mimicking output from (b) Siglent oscilloscope SDS1104X-E work at both normal (real-time) and sequence modes

Typical oscillation setup: 500 MHz sampling (2ns/point) with waveform length of 28 μs , i.e 14000 data points per waveform. We also examined with shorter and longer waveform length. The DAQ program, based on SCPI and VXI-11, has been developed. The program is also tested on Rohde & Schwarz RTM3004.

(a) Timing in the real-time mode DAQ (b) Timing in the sequence mode DAQ To test capture rate and data acquiring time in both DAQ mode, signal is typically generated at 1 kHz. Slower and faster signals have been tested. In sequence (real-time) mode, capture rate to the local oscilloscope's memory can go up to 400 kHz (100 kHz).

(b) Acquisition time per waveform in sequence mode 0.000996

- Time for acquiring data per waveform in realtime mode: 0.25 ± 0.02 s.
- Real-time operation can work with repeated signal up to ~ 3 Hz.
- In sequence mode, data can be transferred and reformatted at speed of 0.087 ± 0.013 s/frame.
- Recording frame rate can go up to 400 khz with frame transferring at $\sim 10 \text{ Hz}$

To examine the DAQ modes with the random signals, we use the cosmic-ray muons at ~ 1 Hz.

(a) Triggering time of cosmic-ray muon events in real-time DAQ mode

- Real-time DAQ mode suits for recording events happen at relatively slow, ~3 Hz or less. For unknown timing trigger, data acquiring is affected by the DAQ deadtime.
- The sequence mode DAQ offers capability to work with faster rate of events. Dead time is smaller than the real-time DAQ but oscilloscope also has to be stopped for transferring all recorded frames.

Results with the table-top cosmic-ray muon detector

- Test operation over few months
- Cosmic-ray muon rate (in)-stability (right plot for operation over one week)
- Observed muon decay (oscilloscopes utilized for pattern triggering, ADC, TDC) from the offline analysis. A $\mu \to e$ decay candidate and the fitted muon lifetime are shown below.

Results with the proton beam-loss monitors

- 650MHz sampling w/ RTM3004 oscilloscope
- (In-)stability operation checked, missed event rate of 1%
- Observed bunch-structure of the beam loss and bunch-by-bunch beam loss monitored for the first time

Conclusion

Digital oscilloscopes are investigated to acquire the data from the photodetectors with self-developed VXI-11/SCPI protocol, particularly for applications of a table-top muon four-channel detector and optical fiberbased beam loss monitor.

- DAQ operated in two modes: with real-time mode, the capture time is 0.25 ± 0.02 s; with the sequence mode 400,000 waveform capture can be achieved in the local oscilloscope's memory with a transferring rate of 0.087 ± 0.013 s per frame.
- Applied successfully for muon decay measurement and proton beam loss monitoring.
- In real-time mode, the deadtime is relatively large. Operation in sequence mode can help to reduce the deadtime but still affected by the transferring rate.

Some improvement possibilities and application considerations:

- Streaming data while keep taking data in real-time and sequence DAQ modes.
- Acquiring the binary data as packet may speed up the data transfer.
- Acquiring from multiple oscilloscopes with timing-synchronized capability

Contact: Son Cao, cvson@ifirse.icise.vn and Sang Truong, ttsang.phys@gmail.com