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Scientific Challenges
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LHC Experiment Data Flow

DATA FLOW

L1 trigger:
*40 MHz in / 100 KHz out

* Process 100s TB/s

- Trigger decision to be made in = 10 ps
- Coarse local reconstruction

* FPGAs / Hardware implemented

2% Fermilab

4 4/24/24 Vladimir Loncar | End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs



LHC Experiment Data Flow

DATA FLOW

ML in trigger and sensor applications must be implemented
in FPGAs or custom ASICs! Must be robust to noise and
radiation and meet high throughput low latency
requirements.
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high level synthesis for machine learning

m + t/ Vivado™ HLS
TensorFlo
Keras ‘
TensorFlow

PyTorch

g L his 4 ml

NMenior:
|'"-3 ) Catapult

COMPILER
Coming Soon

Co-processing kernel

compressed

model —— HLS . _
ReAVETEoR Custom firmware
Usual ML ) design
software workflow f
\tune configuration /
. preCI§|or[
PYT b R C H reuse/pipeline
€ ONNX https://fastmachinelearning.org/hls4ml/
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https://fastmachinelearning.org/hls4ml/

Quantized Neural Networks

* Quantization is one of the most effective techniques to reduce latency, hardware area, and

energy consumption in NNs
Weights are represented in lower precision, most commonly as fixed-point
« Typically comes in two flavors: PTQ & QAT

PTQ QAT In PTQ (left), pre-trained
: model is quantized, then
Pre-trained model Pre-trained model calibrated to determine

scaling factors and clipping
range.

In QAT (right), pre-trained

model is quantized then
weights are fine tuned using
training data to recover

Quantized model accuracy.

Quantized model
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Hessian-AWare Quantization (HAWQ) arXiv2011. 10680

« Accuracy degradation is significant for
ultra-low precision

Sensitivity: Flat vs. Sharp Local Minima
« Mixed-precision quantization addresses ———
this _
Sensitive layers are kept at higher o

precision than less sensitive layers
* Problem: search space is

exponential to number of layers in
the model

2% Fermilab

8 4/24/24 Vladimir Loncar | End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs


https://arxiv.org/abs/2011.10680

Hessian-AWare Quantization (HAWQ)

« HAWQ: An advanced quantization library written for PyTorch

» Optimize hardware constraints (latency, bitwise operations, size limit, etc) with precision
* Features:

Enables low-precision (down to binary)
Mixed-precision quantization
Integer-only computational graph

PTQ QAT HAWQ

Pre-trained model Pre-trained model

Pre-trained model

Quantized model Quantized model
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Case Study:

» Jets are collimated showers of particles that result
from the decay and hadronization of quarks and
gluons Fc, 16 nodes
. . . Activation: ReLU
« Jets contain 100s particles whose properties and I
correlations may be exploited to identify physics Fc, 64 nodes

signals L ACtlvatIOan ReLU |

~

Fc, 32 nodes
Activation: ReLU

!

Fc, 32 nodes
Activation: ReLU

!

Fc, 5 nodes
_ Activation: Softmax )

-

~

~4 .7k parameters
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Uniform Bitwidth Quantization

« Utilizing a uniform bitwidth setting

across all parameters Precision Baseline [%] L;[%] BN [%] Li+BN [%]
« Performance degradation Weights Inputs
observed when transition below INT12 INT12 76.916 72.105  77.180 76.458
: INT8  INTS 76.605 76.448  76.899  76.879
IN_Tg weights o INT6  INT6 73.55 73.666  74.468  74.415
* Minimal to negligible influence INT4 INT4 62.513 63.167 63.548  63.431
observed from L1 Regularization FP-32  FP-32 76.461  76.826 76.853  76.813
and Batch Normalization on
performance
$& Fermilab
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Progression Towards Mixed-Precision

 Utilizing a uniform bitwidth
setting across all parameters
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Layer Sensitivity and Hessian Analysis

« Certain layers are more sensitive to quantization than
others

« Mixed precision strategy: aggressively quantize less
sensitive layers to lower bitwidths

* NNs generalize better with locally flat
minima-determined by the Hessian

* Use Hessian as sensitivity metric for quantization
Layers ranked by Hessian trace

Average Hessian Trace

100

10_1j

I S S, (N S ST S S S TP A
<16,64> <64,32> <32,32> <32,5>
Layer
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Layer Sensitivity and Hessian Analysis

« Certain layers are more sensitive to quantization than
others

« Mixed precision strategy: aggressively quantize less
sensitive layers to lower bitwidths

* NNs generalize better with locally flat
minima-determined by the Hessian

* Use Hessian as sensitivity metric for quantization
Layers ranked by Hessian trace

100 7]

Average Hessian Trace

) o - 107
0= £.0,= g[rre)]{floor) - wl[

i=1

I S S, (N S ST S S S TP A
<16,64> <64,32> <32,32> <32,5>
Layer

Hessian Trace L2 norm of quantization perturbation

Compute and sort each layer by Q and select the bitwidth with
the minimal Q
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Hardware Constraints Optimization

 Bit Operations (BOPs) are computed to estimate model complexity
Number of operations per inference

BOPs ~ mn((1 = fp)babw + ba + bw + logy(n))

» Other constraints: Measured or est. latency, model size (humber of parameters or
memory size)
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Mixed Precision Pareto Front
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It’s importance in quantization coincides with the observed clusters, with higher
performing points using larger bitwidths for input layer
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O PyTorch his 4 ml

HAWG HLS Project HI'S
Rl I COMPILER

Usual ML workflow: Configuration:
neural architecture model conversion, '
search, compression, precision,

li =
P, Co-processing
Kernel

ONNX

2% Fermilab

17 4/24/24 Vladimir Loncar | End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs



O PyTorch his 4 ml

HAWQ HLS Project H|_s
Usual ML workflow: Configuration: il Bl  COMPILER
neural architecture model conversion, '

search, compression, precision,
li =
i Co-processing
Kernel

QONNX

Quantized ONNX extends ONNX open-source
format for representing ML algorithms.

e Low-bitwidth representation

e Mixed and arbitrary precision

e Intermediate representation abstraction
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def __init__ (self):

super(Net, self).__init__() PyTorCh .”T
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel COMPILER

self.convl = nn.Conv2d(1, 6, 5) _ TorCh IR
self.conv2 = nn.Conv2d(6, 16, 5)

# an affine operation: y = Wx + b Graph
self.fecl = nn.Lineaxr(16 * 5 %= 5, 120) # 5+5 from image dimension

self.fc2 = nn.Lineaxr (120, 84)
self.fe3 = nn.Lineax (84, 10)

Torch IR
Graph to
ONNX Graph
Translator

Gemm

B (10x84)
€ 10y

Gemm

B (84x120)
C (84)

Gemm

B (120x400)
C (120)

Conv

W (16x6x5x5)
B (16)

Conv

B (6)

1x1x32x32
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HAWQ to QONNX

* QONNX introduces new operators to represent uniform quantization and
abstracts implementation details

Mul

B = 0.04261492

MatMul
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Div

B =0.18945416...

0 (16x64)
1=1
2=0
3=6

1x16

MatMul

B =0.00443813...

0 (64x32)
1=1
2=0
3=6

Div

B =0.19984923...

MatMul

e viawton convan | ond—to-end codesign of Hessian-aware Quantized neural networks for FPGAs

Initial format
(post-export)
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0 (16x64)

1
0
6

Div

B =0.18945416...

MatMul

B =0.00443813...

Div

B =0.19984923...

e T viaulinm munivan

0 (64x32)
1=1
2=0
3=6

MatMul

Format: Fold
constants, infer

shapes,

standardize

names

| >

Quant
0 (64x32)

=4
2=0
3=6

64x32

global_in

Quant
0 (16x64)

Div

B =0.18945416...

16x64

WENVIT

1x64

B =0.00443813...

1x64

1x64

Div

B =0.19984923...

—..J-to-end codesign of Hessian-aware Quantized neural networks for FPGAs
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global_in

Quant
0 (16x64)

(1] (]6x64)
: Format: Fold
constants, infer
shapes,
standardize
names

Div

B =0.18945416...

16x64

Div

B =0.18945416...

MatMul MatMul

Optimize:
Merge scaling

factors

B =0.00443813... 1x64,
M
0 (64x32)
1=1 Tx64
2=0
= Quant
0 (64x32)
=4
F 2=0
Div 36
B =0.19984923...
1x64

MatMul Div
64x82

B =0.19984923...

e T viaulinm munivan

/
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0 (64x32)
1=1
2=0
3=6

global_in

Div

B =0.18945416...

MatMul

1x64

B =0.02220741...

1x64

1x64

MatMul

16x64



O PyTorch his 4 ml

HAWQ HLS Project H|_s
Usual ML workflow: Configuration: il Bl  COMPILER
neural architecture model conversion, '

search, compression, precision,
li =
i Co-processing
Kernel

QO N N X Target Hardware: Ultrascale+

Maximally Parallelized
Target Clock: 200MHz
**Only NN is synthesized™**

ONNX ingestion in HLS4ML is
experimental!
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Firmware Results on Pareto Front
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Firmware Results

» Hessian-aware solution significantly reduces all resource metrics

Using 95.7%, 42.2%, and 36.3% fewer DSPs, LUTs, and FFs respectively

» Solution ‘QB’ from AutoQkeras minimizes total bits in model
Using binary and ternary operators at the cost of accuracy
» Unlike AutoQkeras, Hessian-aware quantization is done only once, then fine tuned
after quantization

26

4/24/24

Model  Acc. [%] Latency [ns] Resources Sparsity [%] BOPs
LUTs FFs  DSPs
Basline 76.85 65 60,272 15,116 3,602 0 4,652,832
INT8 76.45 95 54,888 14,210 671 30 281,277
Hessian 75.78 90 34,842 9,622 154 33 182,260
QB 72.79 60 16,144 4,172 5 23 122,680
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Summary

» Hessian-aware solutions to mixed precision quantization schemes provide reliable solutions
« Exporting HAWQ to QONNX intermediate Representation is now possible
Standard ONNX is also supported!
Other ONNX accelerators can be targeted as well
* Models successfully translated from HAWQ to a firmware implementation
Bit operations serve as an early predictor of resource usage in LUTs, DSPs are less reliable
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Questions
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