I. INTRODUCTION

The recycling of scrap in Europe remains a secure, sus-
tainable, and cost-effective source of raw materials despite
political conflicts with mining countries. This approach helps
prevent conflicts between the local population and the mining
industry. Online classification of recycling materials is crucial
for aligning them with standards. In digitized recycling, pre-
cise online testing of heterogeneous materials allows optimal
control over the composition of recycled products, enabling
alloy-to-alloy recycling. This targeted strategy promotes effi-
cient use of scrap metal, contributing to a more sustainable
metal production. However, non-destructive metrological so-
lutions for copper and aluminium production are currently
lacking. Assessing scrap relies on surface-based techniques,
but these are limited to homogeneous materials or involve im-
practical sample collection and preparation, hindering online
applications.

PGNAA measuring systems offer integral, non-destructive
elemental analysis of complex material flows or batches. By
recording neutron-induced gamma spectra, the method pro-
vides insights into the complete elemental composition of the
material. The demonstrator facility used a neutron generator to
produce monoenergetic neutrons, enabling thermal interactions
for elemental analysis. PGNAA proves robust in analyzing
large-volume samples and material flows, addressing chal-
lenges like inhomogeneity, coatings, or impurities. Its versatil-
ity extends to applications such as oil exploration, explosives
detection, and online quality assurance in the cement and coal
industries.

In the domain of spectroscopy, Machine Learning (ML) is
integral to various techniques, including FTIR, NIR, MIR,
Raman, ARPES, LIBS, and PGNAA, with applications rang-
ing from distinguishing materials like tablets, juices, and
wines to exploring iron ore deposits, analyzing atmospheres of
extrasolar planets, detecting radioactive materials, and ensur-
ing nuclear safety. The integration of ML into spectroscopic
analyses enhances capabilities across scientific and industrial
domains.

Building on our prior research in non-destructive spectral
classification using PGNAA, with a specific focus on copper
and aluminum alloys, we have achieved promising results.
Our approach employed maximum log-likelihood and CNN
(Convolutional Neural Network) techniques. Additionally, for
data generation, we utilized a probability distribution-based
sampling method derived from the prolonged measurement of
a spectrum [} 2].

The classification of mixed copper alloy compositions with
their increased similarity represents an even greater challenge
in comparison to previously explored classification of non-
blended alloys. This investigation is the first contribution of
this paper. The investigation of metal alloy proportions holds
particular relevance in recycling processes. Utilizing gamma
spectra, we emphasize online classification and employ PG-
NAA for non-destructive material analysis. For the first time,
we apply Neural Networks (NN) in the classification of metal
alloys, alongside CNN and maximum log-likelihood. Our
findings demonstrate a significant advancement, surpassing the

current state-of-the-art in CNN classification of copper alloys
and achieving a superior classification rate in just one-fifth of
the time.

II. DATA & PGNAA

PGNAA continuously analyzes materials through neutron
beam irradiation, exciting atomic nuclei and inducing various
nuclear reactions. The excited nuclei relax by emitting gamma
quanta, producing a characteristic gamma radiation in the
sample material. This radiation is measured with a gamma
ray spectrometer, and the gamma energies are visualized
exemplified by Fig. [T All PGNAA spectra used in this paper
were acquired with an HPGe detector]'}

Fig. [1] depicts two spectra labeled as ’2’ and *10°. The
detailed composition can be observed in Table [l The clas-

Table I: The labeling of mixed alloys (from 1 to 10).

Labels| Materials Labels| Materials
1 66% Cul + 33% Cu3 6 50% Cul + 50% Cu3
2 33% Cu2 + 66% Cu3 7 50% Cu2 + 50% Cu3
3 66% Cu2 + 33% Cu3 8 33% Cul + 66% Cu2
4 33% Cul+33% Cu2+33% Cu3 9 66% Cul + 33% Cu2
5 50% Cul + 50% Cu2 10 33% Cul + 66% Cu3
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Fig. 1: Two copper alloy mix spectra, each measured for 2 h.

sification of metal alloys becomes more challenging with
shorter measurement times due to increased noise and reduced
individual energy measurements, as illustrated in Fig.

= Cu3_0.5sec

Counts [log]
5

‘ ‘\HIH ||
2000

Fig. 2: Simulated Cu3 alloy spectrum, 0.5 sec measurement.
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'You can access many metal alloys and other materials online: https:/www.
kaggle.com/datasets/smartfactoryowl/metalclass


https://www.kaggle.com/datasets/smartfactoryowl/metalclass
https://www.kaggle.com/datasets/smartfactoryowl/metalclass

III. DATA CREATION

The sampling method utilizes a fully measured spectrum as
a representative dataset, treating it as a probability distribution
through normalization. The discrete distribution derived from
this spectrum captures new data (see [2l]). During a long-term
measurement (2-4 hours), approximately 70 million energy
values are recorded. The probability, obtained by dividing the
count rate of a specific energy value by the total count rate
sum, converges according to the laws of probability theory
(law of large numbers) towards the true distribution of count
rates from the spectrum. This probability guides the rationale
for sampling short-term measurements. In our scenario, 1
second is equivalent to 50,000 counts for all materials, and
the sum of absolute frequencies is proportional to the desired
measurement time.

IV. RESULTS

For NN and CNN classification, 10 alloy mixtures (listed in
Table[l) were utilized, with 40000 training samples and 10000
testing samples per material, each comprising 100000 counts
(2 seconds).

A. Convolution Neural Network

With CNN, we achieved a classification accuracy of
87.95%. We thus obtain the same result as in the current
state of research with a measurement time that is 5 times
shorter (see [[1]). This is accomplished by converting the one-
dimensional count rate of spectra into a matrix. We split the
spectra at every 511th position, chosen as the escape peak,
into 32 segments and include them in a matrix, resulting in a
32x511 matrix.

The CNN has the following architecture: It consists of four
convolutional layers, sequentially increasing the number of
channels from 1 to 3, 9, 12, and finally 9, each employing
a 3x3 kernel, followed by batch normalization, rectified linear
unit (ReLU) activation, and max-pooling with 1 padding. Sub-
sequently, a single convolutional layer reduces the channels
from 8 to 5 using a 2x2 kernel with ReLU activation. The
network concludes with one fully connected layer. The output
layer comprises 10 neurons. The total number of trainable
parameters is 2476482. The model was trained using the
CrossEntropyLoss, a learning rate of 0.001, and over 150
epochs, with the Adam optimizer.

B. Neural Network

The following NN was developed for classification and we
achieved a classification accuracy of 92.57 %.

The input dimension has 16384 features and an output of 10
neurons. The network comprises 13 hidden layers of varying
sizes, starting at 7000 neurons and decreasing to 10 neurons.
In total, there are 264383165 trainable parameters. The model
was trained using CrossEntropyLoss, a learning rate of 0.01,
and over 150 epochs with the Adam optimizer.

C. Maximum log-likelihood

For the classification of short-time spectra ’s’ using the
maximum log-likelihood method, we first obtain probability
distributions for long-time spectra ’S;’, as described in Chapter
The long-term spectra (51, ..., S10) are now transformed

into probability distributions. The classification process in-
volves determining which distribution best fits the short-time
spectra ’s’. This task is efficiently handled by the maximum
log-likelihood method. The method evaluates the likelihood
of a short-time measurement given a completely measured
spectrum, assigning it to the distribution that maximizes this
likelihood. Evaluation of the short time measurement with
this method with corresponding probability distribution yields
mlaxlog(p(s|Si)) (see [2I)).

With the maximum log-likelihood, we achieve an impressive
accuracy of 95.76% within a quarter of the counts, i.e., 25,000
counts (0.5 seconds). Maximum log-likelihood achieves better
accuracy than NN and CNN. Furthermore, NN achieves better
accuracy than CNN after approximately 0.25 seconds, as
detailed in Fig. 3]
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Fig. 3: Comparison of accuracy over time for Maximum Log-
Likelihood (MaxLogL), NN and CNN methods.

V. CONCLUSION

In conclusion, our study makes a significant contribution
to the field of non-destructive online classification of copper
alloy mixtures using PGNAA. By employing maximum log-
likelihood, we successfully classify gamma spectra nearly
perfectly in less than one second, providing insights into the
proportions of metal alloys-an aspect not explored before.
Notably, we achieve improved CNN classification of copper
alloys with a better classification rate in just one-fifth of
the time compared to existing benchmarks. Additionally, our
study demonstrates that NN achieve better accuracy than
CNN. Our results highlight the possibility of distinguishing
between mixed materials, even when they consist of alloys
with similarities.
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