
24th IEEE Real Time Conference - ICISE, Quy Nhon, Vietnam 

References

[1] [2] [3]

Contact
roland.sipos@cern.ch

Affiliations

Contribution ID: 5765004

The Ethernet readout of the DUNE DAQ system
Roland Sipos for the DUNE Collaboration

Introduction
In 2023 the Deep Underground Neutrino Experiment (DUNE)[1] Data Acquisition 
(DAQ) system transitioned to a fully Ethernet based readout. While most of the 
modular readout system design could be preserved, the adoption of Ethernet 
required a modified data reception block. This work included a completely new I/O 
device library implementation, interfacing with the detector electronics via a 
transmitting firmware module that is provided by the DAQ.

In addition to data reception the readout is processing all incoming data to carry out 
hit-finding and generate trigger primitives, is buffering data in DRAM while the trigger 
takes its decision, and upon command persist up to 100 seconds of all raw data in 
high-performance NVMe drives.

Data flow diagram of the DUNE DAQ generic readout subsystem. Transitioning to Ethernet readout requires 
the introduction of a new detector data format, and new implementations of the data reception component 

and processing pipelines and stages.

Implement Ethernet readout variant

Front-end domain
The detector electronics transmits data over 10 Gbps links. Those are aggregated 
into 100 Gbps links via network switches and are fed to the readout unit servers. 
The overall aggregated data throughput for each of the 4 DUNE Far Detector 
modules is ~30 Tbps. In this poster results refer to the TPC electronics of the 
Horizontal Drift Far Detector module, consisting of 1500 x 10 Gbps links, each 
streaming data over 4 UDP streams at ~2 Gbps. Each UDP payload is equipped 
with a uniform DAQ header that carries information about stream and sequence 
identification. 

 

Software implementation
The DPDK based implementation consists of a new dynamically loadable module 
implemented within the DUNE DAQ Application Framework[3]. The module 
implements the standard DAQ module interfaces for configuring, controlling, and 
monitoring the underlying resources, in this case the network interfaces. The main 
functional steps are the following:

● Initialization: Based on a detector readout map a connection topology is 
established. For intra-process message passing of the data, either intermediate 
buffering or callback (zero-copy) mechanism is used between the modules.

● Configuration: Through EAL the selected interface is initialized and configured with 
the provided parameters for MTU, number of RX rings and their depth to use, and 
allocation of memory pools, each with given number of memory buffers. Using the 
Flow API a load balancing policy is configured, based on the topology provided 
during the initialization step. Each source IP is routed to a dedicated RX ring, and 
they are distributed among the configured set of CPUs to be used. The CPU set 
defines the number of DPDK threads that can be launched for reading the DMA 
buffers and process a burst of packets.

● Start/Stop: The worker threads are spawned on each CPU from the set defined in 
the configuration. They are polling the assigned descriptors for acquiring a burst 
of network packets, which are reinterpreted and copied out from the DMA 
buffers, and forwarded to intra-process connections towards the generic readout 
modules.

Data Plane Development Kit (DPDK)[2]
In order to sustain the multiple 100 Gb/s aggregated input data streams’ 
high-throughput and low latency requirements, the new software stack for the I/O 
device control, configuration, monitoring and readout of the NICs in the readout 
units is built upon DPDK.It enables more efficient computing than the standard 
interrupt processing that is available in the kernel. It uses a PMD (poll-mode driver) 
that eliminates data copies from kernel to user space.

The readout units’ system configuration is automated to allocate huge-pages of 
memory on the same NUMA location where the NIC is connected, and that the 
100Gb NIC interfaces can be bound with the PMD driver. The readout subsystem 
uses the following key DPDK features:

● EAL (Environment Abstraction Layer) - Provides the main entry point for 
configuring and controlling the interfaces, like their RX/TX descriptors. Provides 
access for resources on the system (CPU cores, NUMA aware DMA buffers).

● Mempool and Mbufs - This library is dedicated to creating and allocating memory 
pools, and data structures that carry network packets as messages.

● Flow API - A programming interface for defining rules for balancing and routing 
network packets to dedicated RX/TX descriptors based on configurable rules.

Single detector components
for charge readout

Links and 
Data Streams

Payload size 
and arrival rate

Total throughput
(incl. IPv4 and UDP headers)

Anode Plane Assembly (APA) 10 links, 4 streams each 
Total: 40 streams

7200 Bytes @ 30.5 kHz 
x 40 streams

~82.5 Gbit/s

Numbers of physical links and data streams from the TPC electronics of the Horizontal Drift Far Detector.

Comparison of the kernel space network driver and the DPDK provided PMD driver, highlighting the benefits of 
poll-mode drivers: no interrupts via the OS scheduler, lack of context switching, and eliminated extra memory 

copies between the kernel and user space. Picture source: DPDK Summit presentation.

Performance evaluation
There is an extensive operational monitoring metric set provided by the NICs’ 
hardware counters that is periodically acquired through the DPDK extended 
statistics API. These contain information about throughput, packet burst occupancy 
rates, and different error conditions like CRC, dropped and missed packets 
occurrences. Several low-level processor counters are also gathered for analysis, 
like cache misses and memory bandwidth utilization. These data allowed finding the 
optimal configuration parameters for the system. Hardware topology oriented tuning 
for NUMA awareness, last-level cache (LLC) efficiency, and processing threads CPU 
affinity control is in place for achieving deterministic quasi-real time performance 
without packet loss. 

These optimization techniques are essential for scaling up configurations, with 
multiple 100Gb interfaces and detector elements being read out by a single CPU 
server, including all processing functionalities like the Trigger Primitive Generation 
and the Supernova Burst persistency (on NVMe drives for over 100 seconds).

Overview of the software implementation with the buffering and processing components. The used configuration 
parameters (arrows) of these elements are also highlighted with the operational monitoring metrics (dotted lines). 

The last stream handler module shows the callback mechanism instead of the intermediate buffer.

Summary
The Ethernet readout is successfully integrated into the DUNE DAQ system and 
used in standard operations for the DUNE detector prototypes at the Neutrino 
Platform at CERN, and in ICEBERG at Fermilab. The full readout feature set and 
requirements were validated and demonstrated using multiple generations of CPU 
servers. Scalability studies and further performance evaluation with different 
hardware components and topologies are ongoing in order to finalize the readout 
units’ technical specification.

The left plot shows the data rate from 4 detector elements (APAs) of the NP04 prototype detector at CERN. The 
data is received by 4 readout units, each equipped with a 100Gb NIC. On the right plot the total number of 
missed packets are shown, which can occur if there is processing backpressure. Both plots indicate that for 
several hours the full NP04 detector’s data was acquired via the Ethernet readout without any data loss.


