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EIC streaming readout as motivation Jefferson Lab

iomas Jefferson National Accelerator Facility
— Configuration & Control
I
Power

4 The correct location for the ML on the FPGA

Detector FEB FEP | DAQ . . ) .
(Front End Board) | (Front End Processor) | (Data Acquisition) filter is called "FEP" in this figure.
| ' +  Thisgi ic earli
s gives us a chance to reduce traffic earlier.
[ BW: O(100 Tbps) > [ BW: O(10 Tbps) > g ff

L~100m Beam collision clock input intelligence to L1.
fiber .
A Goal: O(100 Gbps) 4 However, it is now unclear how far we can go
Fiber T with physics at the FPGA.

' “ + Initially, we can start in pass-through mode.
Switch /

Server/ Switch/ Sv(vail:csgr( . .
FPGA i ERL“dkgt e | e 4 Then we can add background rejection.
“W 4 Later we can add filtering processes with the
: : ' largest cross section.
‘ S \ Analog ~ 20m

— — — e — — — —

LVDS ~ 5m

Power Supply System 4 In case of problems with output traffic, we can
(HV, LV, Bias) add a selector for low cross section processes.
Cooling Systems 4 The ML-on-FPGA solution complements the

purely computer-based solution and mitigates
DAQ performance risks.
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Motivation for GlueX Jefferdo

iomas Jefferson National Accelerator Facility

O Real-time data processing is a frontier field in experimental particle physics.

O The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real-time data
processing.

O Many tasks, such as tracking and particle identification, could be solved using modern Machine Learning (ML) algorithms which are
naturally suited for FPGA architectures.

O The work described in this report aims to test ML-FPGA algorithms in a triggered data acquisition system, as well as in streaming
data acquisition, such as in the future EIC collider.

L The first target is the GlueX experiment, with a plan to build a Transition Radiation Detector (TRD) based on GEM technology (GEM-

TRD), to improve the electron-pion separation in the GlueX experiment. It will allow to study precisely reactions with electron-
positron pairs in the final states.

forward calorimeter
G LUE barrel dime-o DIRG GEMTRD O GEM-TRD is supposed to be installed
S start  CHorimeter HoH in front of the DIRC detector.

counter

O Hall D is dedicated to the operation
with a linearly-polarized photon
beam produced by ~12 GeV electrons
from CEBAF at Jefferson Lab.

O Typical L1 trigger rate 40-70 kHz
O Data rate 0.7 — 1.2 GB/s
O L1 Trigger latency 3.5 us.
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Generic EIC R&D project RD15, ML-(on)-FPGA Jefferdon Lab |

iomas Jefferson National Accelerator Facility }
|
I

O Usually, several PID detectors are used in an experiment.
O For example, the GEM-TRD and e/m-calorimeter, both provide separation of electrons and hadrons.

O Summation and processing of joint data from both detectors at the early stages will increase the identification power of these
detectors compared to independent identification.

O To test the “global PID” performance we work on developing the ML-FPGA setup for real-time data pre-processing.
O The setup consists of several PID and tracking detectors: emCAL, GEMTRD, GEM tracker.

O Preprocessed data from both detectors including decision on the particle type will be transferred to another ML-FPGA board with
neural network for global PID decision.

O The global filter transfers data to off-line computer farm, running JANAZ2 software.

Detectors Low latency filter Computer farm

ML-FPGA
PID
GEMTRD JANA2

ML-FPGA ML-FPGA .
Global High Level

Filter Event
ML-FPGA Reconstruction
PID
emCAL

Tracking

Tracking

Level 0 Level 1 Level 3
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FPGA test board for ML

Jef on Lab

iomas Jefferson National Accelerator Facility

At an early stage in this project, as hardware to test ML

algorithms on FPGA , we use a standard Xilinx evaluation boards

rather than developing a customized FPGA board. These boards

have functions and interfaces sufficient for proof of principle of
ML-FPGA.

The Xilinx evaluation board includes the Xilinx XCVU9P and
6,840 DSP slices. Each includes a hardwired optimized multiply
unit and collectively offers a peak theoretical performance in
excess of 1 Tera multiplications per second.

Second, the internal organization can be optimized to the
specific computational problem. The internal data processing
architecture can support deep computational pipelines offering
high throughputs.

Third, the FPGA supports high speed I/0 interfaces including
Ethernet and 180 high speed transceivers that can operate in
excess of 30 Gbps.

FMC+
(24 x GTY)

User Clock Input SMAs

SYSMON Header

USB-JTAG Connector
JTAG Header
USB-UART Connector

Samtec FireFly Interface
(4x GTYs)

QSFP28
(4 x GTYs)

QSFP28
(4xGTYs)

Featuring the Virtex® UltraScale+™ XCVU9P-L2FLGA2104E FPGA

Ethernet Port
(10/100/1000 Mb/s Tri-Speed Ethernet)

_ XCVU9P-LGA2104E
RLDRAM3 72-bit
(2 x 36 Components) FMC

oile
vcu118-board-image

QSPI Flash User Push Button
Memory Switches

DDR4 80-bit PCle Edge Connector
(5 x16 Components) Gen3 x16, Gend x 8
Bottom Side of Board (16 x GTYs)

DDR4 80-bit
(5 x 16 Components)

Xilinx Virtex® UltraScale+™

Pmod Headers

PMBus Header
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GEM-TRD prototype for EIC R&D Jefferdo

mas Jefferson National Accelerator Facility

To demonstrate the operating principle of the ML FPGA, we use the existing sefup
from the EIC detector R&D project

A test module was built at the University of Virginia

The prototype of GEMTRD/T module has a size of 10 cm x 10 cm with a
corresponding to a total of 512 channels for X/Y coordinates.

The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz
sampling.

GEM-TRD provides e/hadron separation and tracking

/ electron

pion /

: Entrance
Radiator / window
3 2000
I e i
w -
o L
g 15m_ ] ......
Pr'imr'y g. A Drift cathod E- i drifttime WJ
dE/dx | TR/ = Y S ' Heeece S
clusters/ photon Xe gas - § 1000 |
mixture =3 i
500 |-
A i
(— B B Amplification i ——— . i / AR IR S L
Readout region M e 3 GEMs 40 60 80 100 120 140 160 180 200
fadc time, 8ns
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GEM-TRD principle

Je on Lab

iomas Jefferson National Accelerator Facility

L The e/pion separation in the GEM-TRD
detector is based on counting the ionization
along the particle track.

GEM-TRD can work as micro TPC, providing 3D track segments

T E f
O For electrons, the ionization is higher due to g€ 351 E 35
) oy . - =
the absorption of transition radiation photons N ¥
O So, particle identification with TRD consists of 30 |- 30
several steps:
: : : : 5L o 25 |
» The first step is to cluster the incoming S i
signals and create "hits". s i
> The next is "pattern recognition" - 20 © 20 1
sorting hits by track. 5
> Finding a track 15[ 15 |
> lonization measurement along a track
» As a bonus, TRD will provide a track ol
segment for the global tracking system. or i
5[IIIIIIllll|lIIIIIll S_IIIIIIIIIII|IIIIIIII
-15  -10 -5 0 0 5 10 15
projection X, mm projection y, mm
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GEMTRD tracks Jefferdon Lab

iomas Jefferson National Accelerator Facility

Q /n a real experiment, GEMTRD will have multiple tracks.

L So we also need a fast algorithm for pattern recognition

O As well as for track fitting.

L The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
Q And a recurrent neural network — LSTM, for track fitting.

. ° Javier Duarte
. {} ‘&7, arXiv:2012.01249v2 [hep-ph] 7 Dec 2020
@) &

@ ] &
ﬂgf - . .
% s J HEP advanced tracking algorithms
at the exascale (Project Exa.TrkX)

L https://exatrkx.github.io/

(vj, ek) (eli,
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GEMTRD tracks Jefferdon Lab

iomas Jefferson National Accelerator Facility

Q /n a real experiment, GEMTRD will have multiple tracks.

L So we also need a fast algorithm for pattern recognition

O As well as for track fitting.

L The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
Q And a recurrent neural network — LSTM, for track fitting.

O PID is based on measuring ionization along the track.

. %‘ ° Javier Duarte

. {% Y, . arXiv:2012.01249v2 [hep-ph] 7 Dec 2020
¥ ==
ﬂ%f K:
7|

 HEP advanced tracking algorithms
at the exascale (Project Exa.TrkX)
O https://exatrkx.github.io/

(v,', ek) (e/i,
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GNN for pattern recognition Jefferson Lab

iomas Jefferson National Accelerator Facility

Q Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification.
» These models read a graph of connected hits and compute features on the nodes and edges.

W The input and output of GNN is a graph with a number of features for nodes and edges.
> In our case we use the edge classification

O A complete graph on N vertices contains N(N - 1)/2 edges.
» This will require a lot of resources which are limited in FPGA.

L To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.

O /n our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.

O Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
U The trained GNN processes the input graph and sets the probability for each edge as output.

L The right plot shows edges with a probability greater than 0.7
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4/23/24 24th IEEE Real Time Conference - ICISE, Quy Nhon, Vietnam 10

Sergey Furletov —




GNN performance Ja

iomas Jefferson National Accelerator Facility

O This type of graph neural network is not yet 104 1 1 fake |1.07 ~—
supported in HLS4ML. ] ] true W
d So we did a manual conversion first to C++ and then 103 081
to Verilog using Vitis_HLS. ]
H  This neural network has not been optimized, so it ) 06
consumes a lot of resources - 70% of DSPs, (4651 of 10
6840). 0.41
> At the moment it can serve up to 21 hits and 42 1ol
edges, or, in our case (GEM-TRD), it will be 3-5 0.21
tracks. j |_ ﬂﬁ —— purity
—— eff
O However, it performs all calculations in ~3 s (left 10° , ]I‘I 1| il I'I , 0.0 — ST . . .
plot) (thanks to Ben Raydo), providing good purity 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Model output Cut on model score

and efficiency (right plot).

v O gnn2dfs2 20 945E3 42 4424 3036 2519454
w @ toGraph - 495E3 - - dataflow
@ fromGraph - 1.655E3 - - yes 0 0 197686 1673583

» ® gnn2dfs_loc_1 - 2.480E3 - - no 42 4422 172620 785082

» ® toGraph_Block_split100_proc205 - 2.400E3 - - no 0 2 7226 49627
VITIS_LOOP_1365_1 - 315.000 - no
VITIS_LOOP_1400_3 - 110.000
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RNN/LSTM for track fit

Jef on Lab

iomas Jefferson National Accelerator Facility

% of zeros = 0.75

O The hits sorted by tracks from the pattern recognition GNN are fed into another neural network
trained to fit the tracks.

O We tested DNN and RNN/LSTM neural networks. ( thanks to Dylan Rankin for help ) ]

O DNN is faster, but LSTM seems to be more reliable in the case of a stochastic distribution of hits
on the track.

» The work on optimization of NN is ongoing.
O The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 us.

+ Latency (clock cycles):
* Summary:

Interval | Pipeline |
min | max | Type | 10° 4
+----- B B +----- e +
208| 208| function | -03 -0.2 -0.1 0.0 01 02 03
i e ok +----- Fommmme e e e +
0.12 4 == Utilization Estimates == Utilization Estimates
* Summary: * Summary:
R e L LT o - e e Fommmma e Fommmm .- O Ho-eme-m- +o--mm-- Fommmm e R - +
0.10 - | Name | BRAM 18K| DSP48E| FF | LUT | URAM| | Name | BRAM 18K| DSP48E| FF | LUT | URAM|
R T Feemmmm e R Fommmme o R R I + + +
|DSP | - -1 | | -| |DSP | | -
|Expression | - | 0| 6| -] |Expression | | |
0.08 A | FIFO | - - -1 -1 -] |FIFO | -1 |
| Instance | 64|  4271| 23258| 163672| -] |Instance |
| Memory | - - - -| - IMemory | |
|[Multiplexer | - - - 955 | -] [Multiplexer |
0.06 1 [Register | iy S 2323 2l -1 |Register |
R L E L L LSRR +------- Fommmmmmm s R +----- O S +
|Total | 64|  4271| 25581  164633| 0| |Total |
004 - Fecccccccccccccccaaa-- = c=== tovceen- L SRR it L LR R Al toeee- + +----------memmmme e +
’ |Available SLR | 1440 | 2280 | 788160 | 394080| 320| |Available SLR |
o Feemmme e D Femmmmmm R R O e +
|utilization SLR (%) | 3] 41| 0| |utilization SLR (%) |
0.02 1 R R LR L s +--\------ R o I R R R LR +
|Available | 2864480| 1182240| 960| |Available |
T T T Lo LR LAl AL R el hrmeneea +e-em--- +---p---- e +----- 4 F-=sscssscsssesscsse== +
0 20 60 |utilization (%) | 1| 13| 0| |utilization (%) |
L R e L L LY R D +-feem Fo-------- +o---- + Foccceccceccccee e +
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MLP neural network for PID

Je : on Lab

iomas Jefferson National Accelerator Facility

QO After the track is fit, the ionization along the track can

@par9
be COuntEd. @par8 == Performance Estimates
. . .. . . @par7 I -
O The distance along the track is divided into 10-20 bins, g . g e
and the ionization energy in these bins is fed to the input epars = = S = 4
| Clock | Target| Estimated| Uncertainty|
of the MLP neural network. @par4 N ! ! ! !
. . @par3 o lap_clk ( 5.@ 3.968| 0.62|
 Typically neural network weights often have many zeros, ... ; ; . ; =
thus, it is possible to reduce the size of the network by apar1 & + Latency (clock cycles):
removing weights close to zero (~50%) @par0 * Summary: | |
O The network performance near the working value of | nin e L i e | eee™® 1| Latency = 65ns
90% efficiency. e~y ey N
his4ml -
100 l 1@ 1@ ( 1!)nct10n l Il = 5ns
2501 | — etagger, AUC = 96.1% |
p tagger, AUC = 96.1% H
| ==- etagger, AUC = 95.7% { == Utilization Estimates
200 - p tagger, AUC = 95.7% §
/ * Summary:
> + + t + t
§1°'1' | Name | BRAM_18K| DSP4SE| FF | LUT | URAM|
150 - AT + : - + + + +
z i |DSP I ol - - - ol
g g |Expression | - - 0] 6] -
Z 3 |FIFO | -| - = - -
100 4 5 |Instance | 16| 233 1241 11742 -
g 10-2 4 |[Memory I ol - -l - -
0 |[Multiplexer | -1 - =| 36| -
|Register | = - 1235| - -
50 + + + + + + +
|Total | 16| 233 2476 11784 | 0|
iUtilization (%) | ~0 |( 3] ~0 | ~0 | @i
ol cemBlbhdeadl b L, | 10-3 L : | | | | t t t - t t t
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8 1.0 ane .
weights Signal Efficiency ‘ DSP utilization 3% \
4/23/24 Sergey Furletov 24th IEEE Real Time Conference - ICISE, Quy Nhon, Vietnam 13




FPGA test bench (vcul18 board) Jefferdo

iomas Jefferson National Accelerator Facility

— GNN: Pattern recognition microblaze 0
_+ in_s_V Vitis™ HLS - DLMB + |
ap_clk out s V + |||+ INTERRUPT :

= 1l ILMB +

g ap_rstn =+ S0 AXis M AXI DP + -
£+ siaas MO_AXIS =
Gnn2dfs2 (Pre-Production) ) + S2 AXIS - + =
= - , P M1_AXIS +
o BELGLIE MICFOB|aZG M2 _AXIS + =
E = S4_AXIS - L
LSTM: Track fit HI UG M3_AXIS +
: M4 AXIS 4 =
_+ in_s_V_V Vivado™ HLS Clk M AXI DC + _'
ap_clk |:’ :I out s V.V 4 : Reset h;AX_I c +
Q ap_rst n T .

- MicroBlaze

Lstm3 (Pre-Production)

DNN: PID module

+ in—s—v—v Vivado™ HLS
ap_clk [ ] out s V.V 4 :

-Q ap_rst_ n '

Gemtrd3 (Pre-Production)

O Several version of IPs were synthesized and tested on FPGASs.
O The logic test was performed with the MicroBlaze processor.
O //O data transfer is carried out through the ETH interface with the TCP/IP core.
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Bea m teSt at Fe rm i La b Jeom.as Jeﬂ'ersgr National Accelerator Facility
Calorimeter GEM-TRD Micromegas TRD

s\. 4

tate (PbW

d FermilLab test beam :
PR me— » Primary beam: protons 120 GeV
A LA T 1) » 4.2 seconds = length of spill
= » 60 seconds = approximate rep rate of spill
B — » Beam intensity: Particles per spill : 10K - 1M
: (Pps)
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Tracking performance

Jef on Lab

iomas Jefferson National Accelerator Facility

y pos,mm

y pos,mm

y pos,mm

Display Event: 106 Run: 3202

Display Event: 213 Run: 3202

E y (r/o strip, 0.4mm) I _ _——_1 1. Y Toprows: show ionization along the
- P A e track in GEMTRD detector.
wE- ‘ , 2 (drift time, 8ns FADC)|i = wE- T = - = 7 > Red circles are reconstructed
E 2 W ~ J— o : clusters using some dE/dx
e Qe ——— — =y ) = | threshold. The size is
e n — e — d |} proportional to energy.
- | | | | | ! “E | L - | ~——' W Middle rows: after filtering out the
: B : E - = T e noisy clusters, the coordinates of the
Clustors for FPGA Clustors for FPGA clusters are sent to the FPGA/GNN
= e VE for pattern recognition.
ZEE_ 2 :ZE_ oS : ° . ° ° O Bottom rows: GNN provides labeling
e - 08 of clusters (by color in the figure), the
"E E ° same colors belong to the same
—102— ° o ° o —105— ° ° ° o0 o ° ° track.
wE ° ° ° oE ° O Then clusters of the same color (tag)
o= oE- are sent to the track fitting module:
é o % b e — LSTM.
ML-FPGA response ML-FPGA response D The I’eSU/tS Of traCk flttlng are

“E e “E represented by lines in the figures.
= § of o o e o o
0= T wE o o o o L The next step is to count all the
“E E o ionization in the corridor around the
o o . . . o . track and send it to the PID module
CE e o °— o s oE 00 © (DNN).
-20 F— — —@ o -O—— 20— o
wE- - O As a bonus, GEMTRD provides a track
e | | | | | E | | | | o segment for the global tracking
0 ° 0 K & T - ° 0 s 2 = 2 pos system.
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B P — R —— .
Tracking performance 2 Jefferdo
iomas Jefferson National Accelerator Facility
Display Event: 77 Run: 3202 Display Event: 224 Run: 3202 [D TOp rows: ShOW Ionlzatlon along the

i of — - o g wf T - — | =+ track in GEMTRD detector.

E e —— ~ - > Red circles are reconstructed
oE = - 6 = — U clusters using some dE/dx

°E = — —— : B — —_——— e ——e= | ° threshold. The size is

wE- . wE- o ~ ! proportional to energy.

e f e ‘Q Middle rows: after filtering out the
= 1 . SETSEENEEE—— 50 ey T PP T M noisy clusters, the coordinates of the
z pos,mm z pos,mm

clusters are sent to the FPGA/GNN
Clusters for FPGA Clusters for FPGA for pattern recognition_

e “E e “E o o o o o . .

g “E g “E ° O Bottom rows: GNN provides labeling
“E WE o ° ° ° of clusters (by color in the figure), the
oE- o 3 o o o oE- o o o o same colors belong to the same
°E ° o © o ° s o °E ° ° o ° track.

- = o o o o
- . . . . wE- o o o o Q Then clusters of the same color (tag)
E e are sent to the track fitting module:
’5005 3 5 s % P 30 ’5°o§ B T [ E— 2. " ozls —2 30 LSTM.
z pos,mm 2z pos,mm
O The results of track fitting are
Y ML-FPGA response . ML-TPGA response represented by lines in the figures.

£ = E 4o§_ o ® —e 8- ° - H

LS e e [ The next step is to count all the
- - . = e ° ionization in the corridor around the
0 _ e Y _ o o o 0= ° e e o track and send it to the PID module
e e = " o o o o (DNN)

0 sy o ® __ Q ’
“E — . o . *E ° o o O As a bonus, GEMTRD provides a track
of o . . . segment for the global tracking
505 3 6 15 % 3 ’ Z o 505 ey Z pos' S S yS tem.
4/23/24 Sergey Furletov 24th IEEE Real Time Conference - ICISE, n, Vietham - 17




Latency and rates (very preliminary) Jefferdon Lab

iomas Jefferson National Accelerator Facility

O Although the system worked in principle, overall performance was quite poor:
» the board could process data at a speed of about ten hertz.

L The latency was determined by MicroBlaze's participation in the data exchange.

L So the next step was to synthesize the Control IP with the functionality of a C program running on MicroBlaze.
L The IP block was synthesized directly using Vitis_HLS and the overall latency was reduced to 20 us. (~50kHz).
O Control IP block primarily performs serial /0.

L Therefore, it consists of long loops designed to accommodate the maximum data size.

Q /n reality, the average data size is much smaller, so the actual speed should be higher.

L This was confirmed in measurements - peak performance reached 80 kHz.
O This is the first version, not yet optimized and Il violations have not been fixed.

Modules & Loops Issue Type Slack Latency(cycles) Latency(ns) ation Latency Interval Trip Count Pipelined BRAM DSP FF LUT URAM
v O ctrl_s64s @ Il Violation - 4178 2.089E4 - - 8 5 4184 22984 (0]
0000 - - - - -

VITIS_LOOP_399 2 - 4
VITIS_LOOP_443_3 - 1024 5.120E3
VITIS_LOOP_464 4 - 1025 5.125E3
VITIS_LOOP_475_5 @ 1 Violation - 45 225.000
VITIS_LOOP_479 7 @ 11 Violation - 43 215.000
VITIS_LOOP_484 9 VITIS_LOOP_484 10 - 45 225.000
VITIS_LOOP_503_11 - 7 35.000
VITIS_LOOP_508_12 - 21 105.000
VITIS_LOOP_523_13 - 27 135.000
VITIS_LOOP_540_14 - 21 105.000
VITIS_LOOP_542_15 - 22 110.000
VITIS_LOOP_562_16 @ 11 Violation - 4.020E3
VITIS_LOOP_626_20 - 44 220.000
VITIS_LOOP_642_21 - 5.125E3

1
1
3
6
4
5
)
1
3
1
3

o
w w um
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New board design with Control IP

Jef on Lab

iomas Jefferson National Accelerator Facility

L All data I/0 operations are performed by Control IP
L Microblaze is only used to configure the board and monitor data processing.
U Aurora interface provides communication with a second FPGA board that processes the calorimeter data (CNN).

L 10 Gigabit Ethernet uses TCP/IP, receives data from detectors (DAQ) and sends pre-processed data to the computer (farm).

Neural network IPs for data processing

Aurora interface

aurora_64b66b_0

=] | USER_DATA_S_AXIS_TX
|l 4cT_oiFF_ReFcLks

USER_DATA_M_AXIS_RX 4 =
core_sTaTus+ |||

AN

gemtrd3f_0

Vivade™ HLS
' out_s_V_V =

= +in_s_ V.V

microblaze_0

1
DLMB
||+ core_conTroL GT_SERIAL_TX+ || ContrOI IP ILMBI H
|I{+&T_seriaL_rx apLL_CONTROL ouT+ ||| Gemirdat (Pre-Production) _u + INTERRUPT M_AXI_DP 4 i
ctrl_s64s_0 [ +s0_Axis A
Aurora 64B66B gnn2dfs2_0 = +S1_AXIS MO_AXIS + =
Vitie™ HLS L = 4 out_so_v = +SZ_AXIS M ' Bl - M1_AXIS 4 =
itis == = out_s0_ = L =
= - = M2_AXIS == =
10 G b TC P/ I P =+insV d out_s V- = +out_s1_V in_s0_V - = = +s3_Axis | C rO aze M3_AXISI g
[_ H4out s2. v Vitis™ HLS in_st_V4 5 H 454 ax1s M4_AXIS+ =
xxv_ethernet_0 Gnn2dfs2 (Pre-Production) ; +in_s3_v d in_s2 V4 = _" +DEBUG % A)_(I DC+?
= 4out_s3_v in_s4_V = = -
t_serial_port == " Istm3_0 = +out_s4_ Vv in_s5_V - = M AXLICH 3
" =gt _ref_clk ok = - - = - - -
" =+ mii_tx_0 -0 " ferhs 2 Foutss.v MicroBlaze
T stat_tx_0== || = 4in_s V.V out_ s V_ V==
" Fotln 0 stat_rx_0+ " ' Ctrl_s64s (Pre-Production)
Lstm3 (Pre-Production)
10G/25G Ethernet Subsystem
AN V4
fifo_generator_0 \ axis_dwidth_converte/ ) . axis_dwidth_converter_1
l_ _I \/ microblaze_0_axi_intc _I
= S _AXIS l I I M_AXIS - = = 4s_AXIS M_AXIS - = . = S _AXIS M_AXIS 4
l— ﬂ i “+s_axi interrupt -~ " ﬂ
AXIl4-Stream Data Width Converter AXI4-Stream Data Width Converter
FIFO Generator I Y AXI Interrupt Controller I .
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FPGA board resources for GEMTRD Jefferdo

iomas Jefferson National Accelerator Facility

O Neural networks use a lot of FPGA resources.

O Therefore, one VCU118 board can only process
data from GEMTRD.
> See pictures on the right

W The calorimeter uses CNN to process its data and
currently occupies the entire VCU118 board.

U Calorimeter FPGA board has its own 10 Gb
ethernet and Aurora interfaces.

Utilization Post-Synthesis | Post-Implementation

Graph | Table

LUT A 37%
LUTRAM - 4%
FF 11%
BRAM A 8%
URAM 1%
DSP A 83%
10 16%
GT A 4%
BUFG 2%
MMCM 7%
PLL+ 5%

0 25 50 75 100
Utilization (%)
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Calorimeter parameters reconstruction

Je on Lab

mas Jefferson National Accelerator Facility

' By Dmitry Romanov

Modules deposits -

Decoder

B'

5 4 5 \al‘z P Convolutional variational autoencoder

% 4 -2 0 2 H 6
Per cluster values: energy,
pid, x, y, features

Clusters

e Convolutional VAE as a backbone
 Modules deposits as inputs

* Per cluster output of multiple values:
* Energy, e/ m, coordinates, features

Geant 4 simulation

Examples of events with e and it~
showers and p~ passing through.
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CNN for calorimeter reconstruction JefferfonLab
4 In this work we used a convolutional encoder with a decoder ) 5 5 5 5
consisting of dense layers, which provide e-rt separation scores as the |_Clock | Target| Estimated| Uncertainty| ‘
output, lap_clk | 5.00] 4.303| 0.62|
4+ Synthesized with HLS4ML ' T ' '
4 This was done to minimize a network size in FPGA and due to current e ey cyetes):
limitation of HSLAML of supported network layer types. e interval | pipetine |
+ FPGA synthesis with reuse factor of 2 has a latency of 0.7us and an !mmin | max | Type |
interval of 125 clocks. It uses 74% of DPS resources i\139i 139y 125! 125i dataflow |
N’ A — .
Actual values l;redlcted rfrsults L L * L L L L
e 988 % 12 % | Name | BRAM_18K! DSP48EE FF | LUT | URAM!
) 2.9 % 97.1 % igi;ression I :i :I ;I ;I :i
6] 6 i;ﬁ:(t]ance I 42:} 512;I 52223} Ziggigl :i
. M . emoey er e e T
!Register | —! —! —! —! —!
! I I %] | Total | 465| 5124  64853| 259546| 0|
°] °] iAvailable SLR | 144oi zzaoi 788160; 394080i 320i
7] — o S, 7] iUtilization SLR (%) | 32i 224i 8; ssi oi
- Convo?&tiona] de?]fse iAvailable | 4320 | /GW‘i\2364480 | 1182240 | 960 |
e - encoder decoder - T iUtilization (%) | 1oi ( 74i ) 2i 21! oi
Input data output : : —~——H : : :
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Calorimeter CNN optimization with HLS4ML Jeffer<o

iomas Jefferson National Accelerator Facility

hls config['Model'] ['Precision'] = 'ap fixed<20,10>"'

B3 prune_low_magnitude_conv_0
Bl prune_low_magnitude_conv_1
Bl prune_low_magnitude_conv_2
@l prune_low_magnitude_conv_3
6000 { EEE prune_low_magnitude_dense_0
8 prune_low_magnitude_dense_1
B prune_low_magnitude_output_dense

Layer prune_low_magnitude_conv_0: % of zeros
Layer prune_low_magnitude_conv_1: % of zeros
Layer prune_low_magnitude_conv_2: % of zeros
Layer prune_low_magnitude_conv_3: % of zeros .
Layer prune_low_magnitude_dense_0: % of zeros = 0.5
Layer prune_low_magnitude_dense_1: % of zeros = 0.5

0
0.
0
0

oo n

Layer prune_low_magnitude_output_dense: % of zeros = 0.5 £ 4000

Layer prune_low_magnitude_fused_convbn_0: % of zeros = 0.0 §

Layer prune_low_magnitude_fused_convbn_1: % of zeros = 0.0 5

Layer prune_low_magnitude_fused_convbn_2: % of zeros = 0.0 2 %000

Layer prune_low_magnitude_fused_convbn_3: % of zeros = 0.0 (eras. baseline
Layer prune_low_magnitude_dense_0@: % of zeros = 0.0

Layer prune_low_magnitude_dense_1: % of zeros = 0.0 ]

Layer output_dense: % of zeros = 0.0

1000 A

-1.5 -1.0 -0.5 0.0 0.5 1.0 15
Weights
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JANA2 for ML on FPGA

Pre-processed data from the FPGA is transferred over the
network (TCP/IP) to a computer running JANA2 software.

25



JANAAMLAFPGA Jefferson Lab

iomas Jefferson National Accelerator Facility

(JLab ANAlysis framework)

DEtECtOr - JANAZ2 is a multi-threaded modular event reconstruction
framework being developed at Jlab for online and offline

processing

- JANA?2 is a rewrite based on modern coding and CS practices.
Developed for modern NP experiments with streaming
readout, heterogeneous computing and Al

‘‘‘‘‘‘‘ r | GNN Pattern recognition ‘

&) - JANA2 is the main framework chosen for EIC. Used for ePIC
collaboration reconstruction and further Detector 2. Used in

multiple Jlab experiments and prototypes

=i 2 ] et |- DNN PID module

FACTORY
rithm)

(algorith

~O_

Validation software
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JANAAMLAFPGA JefferSon L

I iomas Jefferson National Accelerator Facility

Goals:

- Read and write EVIO
- Write flat ROOT files
Detector

- Receive EVIO by TCP (and save)

- Receive network streams

>
=
prg
<
—
m
U
Q)
prd

- Receive FPGA data

- Simulate sending detector data
- Data Quality Monitor

- Al streaming preprocessing

- Conventional preprocessing
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Outlook Jefferdo

iomas Jefferson National Accelerator Facility

O An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics
at the early stage of data processing.

O The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
O FPGA provides extremely low-latency neural-network inference.

O Open-source HLS4AML software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network
algorithm development.

W The ultimate goal is to build a real-time event filter based on physics signatures.

QPM QCD-Compto Case StUdy jet tagglng

11
/

e(k) Study a multi-classification task: discrimination between highly energetic (boosted)

q, g, W, Z, tinitiated jets

p(p)

t—-bW-bqq Z—qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ 0

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS. Signal: reconstructed as one massive jet with substructure

bubliched in 2007 Jet substructure observables used to distinguish signal vs background
ublished in
Measurement of multijet events at low $x_{Bj}$ and low $Q*2$ with the ZEUS detector at HERA
TG \; [*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..
>0sau
11.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 25
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ADC based DAQ for PANDA STT

Je on Lab

iomas Jefferson National Accelerator Facility

Level 0 Open VPX Crate g M i
=i e B

mom ol

ADC based DAQ for PANDA STT (one of approaches):
* 160 channels (shaping, sampling and processing)
per payload slot, 14 payload slots+2 controllers;
+ totally 2200 channels per crate;
» time sorted output data stream (arrival time, energy,...)
* noise rejection, pile up resolution, base line correction, ..

- Backplane
6U VPX Plug-In X
. B

Module \
y .
)
o |

-y

4 l‘.ilif:
“¥imn

160 Amplifiers;
5 connectors for 32-
pins samtec cables

0 |
: 40 4-channel ADCs .

[ ¥ . L]
\! (configurable up to 1 GSPS); .

* Single Virtex7 FPGA

4+ All information from
the straw tube tracker
is processed in one unit.

4+ Allows to build a
complete STT event.

4 This unit can also be
used for calorimeters
readout and processing.

https://doi.org/10.1088/1748-0221/17/04/C04022

Switch/Management Payload Slots

VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX VPX

1 2 3 4 - 6 T 8 9 10 " 12 13 14 15 16
;j":“JL_IJ"’w" B e ) e e e e e ) 8} 2022 JINST_17_C04022

I ~Eontrol i
Lo | | e | | || e || s it o | o || | i | oo | Lo | i | | Powerful Backplane
|I_~_|I| a RS ussmd] T T | | |I__._J | o
L up to 670 GBs

L. Jokhovets, P Kulessa ..

g JULICH

Forschungszentrum
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A Brief Intro to Artificial Neural Network on FPGA

Je>

on Lab

iomas Jefferson National Accelerator Facility

Image: https://nurseslabs.com/nervous-system/

Neuron
N3 » FPGA Field Programmable Gate Array . S SISl e =l
~ * It can perform logical operation in parallel = ] e e ] e
I T T I I I
@paro Sy SE S e S,
@par8 =H =: == = =: =:
@par7 ===
Inference on an FPGA @pars
1[I 1[I 1[I I
Every clock cycle - = == == =]
(all layer opc_erations can be - @par5
pe_rformed smultazeously) ~ R —'7~V \’\“\mt\::~“ @par4 = lE = =1 =
X1 > Tm > TM ,' (] Q‘ o pES "Clefan slate” FPGY\: programmable and routers
N , A - ‘j @par3 !
w % fm = Jm Wm m—‘lfm—l + bm \
N m,m-1 (Y ) ‘ \Y
1 O : \ . . . @par2
O O Nu § | . . / ! @par1 =
1! addition
O O >O “ activation function¥ « addito I' @paro
L} Seao_.oe’
O A ©, . /! Multiplier 3#}
. E ~._" Unit
:  LUTs, FFs, BRAMS _ .
: >©  Modern FPGAs have DSP slices - specialized )
O hardware blocks placed between gateways and

input layer O

layer m

Up to ~6k parallel operations! 12
(#Multiplication units)

IRIS-HEP th Febraury 13, 2019 Dylan Rankin [MIT] hIS 4 ml

routers that perform mathematical calculations.
The number of DSP slices can be up to 6000-
12000 per chip.

Image from: https://www.embeddedrelated.com/showarticle/195.php
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Optimization with hls4ml package Jeffergo

iomas Jefferson National Accelerator Facility

* A package hlsdml is developed based on High-Level Synthesis (HLS) to build machine learning
models in FPGAs.

article: J. Duarte et al 2018 JINST 13 P07027

Keras
TensorFlow

PyTorch

\ Co-processing kernel

~
AN

his 4 ml

compressed
model — HLS_ —
conversion Custom firmware
. . design
Usual machine learning Jf 9
software workflow
tune configuration
precision
reuse/pipeline
it ] reuse = 4 before pruning after pruning
use 1 multiplier 4 times
| pruning _ _ >
P mult] reyse =2 synapses
use 2 multipliers 2 times each
~p—p| mult P
pruning
=1 mult neurons
~p|mult] reuse =1
use 4 multipliers 1 time each .
' mu|t Song Han, thesis
- mult

4/23/24

Sergey Furletov 24th IEEE Real Time Conference - ICISE, n, Vietnam 32




