

Development of ML FPGA filter for particle identification and tracking in real time

Sergey Furletov (Jefferson Lab)

Team:

F. Barbosa, L. Belfore, N. Branson, N. Brei, C. Dickover, C. Fanelli, D. Furletov, L. Jokhovets, D. Lawrence, C. Mei, D. Romanov, K. Shivu

24th IEEE Real Time Conference - ICISE, Quy Nhon, Vietnam
23 Apr 2024

EIC streaming readout as motivation

- The correct location for the ML on the FPGA filter is called "FEP" in this figure.
- ★ This gives us a chance to reduce traffic earlier.
- ♦ Allows us to touch physics: ML brings intelligence to L1.
- However, it is now unclear how far we can go with physics at the FPGA.
- ◆ Initially, we can start in pass-through mode.
- Then we can add background rejection.
- Later we can add filtering processes with the largest cross section.
- ★ In case of problems with output traffic, we can add a selector for low cross section processes.
- ★ The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.

Motivation for GlueX

- ☐ Real-time data processing is a frontier field in experimental particle physics.
- ☐ The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real-time data processing.
- ☐ Many tasks, such as tracking and particle identification, could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.
- ☐ The work described in this report aims to test ML-FPGA algorithms in a triggered data acquisition system, as well as in streaming data acquisition, such as in the future EIC collider.
- ☐ The first target is the GlueX experiment, with a plan to build a Transition Radiation Detector (TRD) based on GEM technology (GEM-TRD), to improve the electron-pion separation in the GlueX experiment. It will allow to study precisely reactions with electron-positron pairs in the final states.

- ☐ GEM-TRD is supposed to be installed in front of the DIRC detector.
- ☐ Hall D is dedicated to the operation with a linearly-polarized photon beam produced by ~12 GeV electrons from CEBAF at Jefferson Lab.
- ☐ Typical L1 trigger rate 40-70 kHz
- \Box Data rate 0.7 1.2 GB/s
- ☐ L1 Trigger latency 3.5 us.

Generic EIC R&D project RD15, ML-(on)-FPGA

- ☐ Usually, several PID detectors are used in an experiment.
- \Box For example, the GEM-TRD and e/m-calorimeter, both provide separation of electrons and hadrons.
- □ Summation and processing of joint data from both detectors at the early stages will increase the identification power of these detectors compared to independent identification.
- □ To test the "global PID" performance we work on developing the ML-FPGA setup for real-time data pre-processing.
- ☐ The setup consists of several PID and tracking detectors: emCAL, GEMTRD, GEM tracker.
- ☐ Preprocessed data from both detectors including decision on the particle type will be transferred to another ML-FPGA board with neural network for global PID decision.
- ☐ The global filter transfers data to off-line computer farm, running JANA2 software.

FPGA test board for ML

- At an early stage in this project, as hardware to test ML algorithms on FPGA, we use a standard Xilinx evaluation boards rather than developing a customized FPGA board. These boards have functions and interfaces sufficient for proof of principle of ML-FPGA.
- The Xilinx evaluation board includes the Xilinx XCVU9P and 6,840 DSP slices. Each includes a hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera multiplications per second.
- Second, the internal organization can be optimized to the specific computational problem. The internal data processing architecture can support deep computational pipelines offering high throughputs.
- Third, the FPGA supports high speed I/O interfaces including Ethernet and 180 high speed transceivers that can operate in excess of 30 Gbps.

Featuring the Virtex® UltraScale+™ XCVU9P-L2FLGA2104E FPGA

Xilinx Virtex® UltraScale+™

GEM-TRD prototype for EIC R&D

- To demonstrate the operating principle of the ML FPGA, we use the existing setup
- from the EIC detector R&D project
- · A test module was built at the University of Virginia
- The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a corresponding to a total of 512 channels for X/Y coordinates.
- The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz sampling.
- GEM-TRD provides e/hadron separation and tracking

GEM-TRD principle

- The e/pion separation in the GEM-TRD detector is based on counting the ionization along the particle track.
- ☐ For electrons, the ionization is higher due to the absorption of transition radiation photons
- So, particle identification with TRD consists of several steps:
 - The first step is to cluster the incoming signals and create "hits".
 - The next is "pattern recognition" sorting hits by track.
 - Finding a track
 - lonization measurement along a track
 - As a bonus, TRD will provide a track segment for the global tracking system.

GEM-TRD can work as micro TPC, providing 3D track segments

GEMTRD tracks

- ☐ In a real experiment, GEMTRD will have multiple tracks.
- ☐ So we also need a fast algorithm for pattern recognition
- ☐ As well as for track fitting.
- ☐ The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
- ☐ And a recurrent neural network LSTM, for track fitting.

Javier Duarte

arXiv:2012.01249v2 [hep-ph] 7 Dec 2020

- ☐ HEP advanced tracking algorithms at the exascale (Project Exa.TrkX)
- □ https://exatrkx.github.io/

GEMTRD tracks

- ☐ In a real experiment, GEMTRD will have multiple tracks.
- ☐ So we also need a fast algorithm for pattern recognition
- ☐ As well as for track fitting.
- ☐ The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
- ☐ And a recurrent neural network LSTM, for track fitting.
- ☐ PID is based on measuring ionization along the track.

Javier Duarte

arXiv:2012.01249v2 [hep-ph] 7 Dec 2020

- ☐ HEP advanced tracking algorithms at the exascale (Project Exa.TrkX)
- □ https://exatrkx.github.io/

GNN for pattern recognition

- ☐ Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification.
 - > These models read a graph of connected hits and compute features on the nodes and edges.
- ☐ The input and output of GNN is a graph with a number of features for nodes and edges.
 - > In our case we use the edge classification
- \square A complete graph on N vertices contains N(N 1)/2 edges.
 - > This will require a lot of resources which are limited in FPGA.
- □ To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.
- ☐ In our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.
- ☐ Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
- ☐ The trained GNN processes the input graph and sets the probability for each edge as output.
- ☐ The right plot shows edges with a probability greater than 0.7

GNN performance

- ☐ This type of graph neural network is not yet supported in HLS4ML.
- ☐ So we did a manual conversion first to C++ and then to Verilog using Vitis_HLS.
- ☐ This neural network has not been optimized, so it consumes a lot of resources 70% of DSPs, (4651 of 6840).
 - At the moment it can serve up to 21 hits and 42 edges, or , in our case (GEM-TRD), it will be 3-5 tracks.
- However, it performs all calculations in $\sim 3 \mu s$ (left plot) (thanks to Ben Raydo), providing good purity and efficiency (right plot).

[r	lodules & Loops	Issue Type	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP	FF	LUT	URAM
-	O gnn2dfs2			589	2.945E3	-	590	-	no	A 2	4424	394036	2519454	0
	▼ 🧟 toGraph			499	2.495E3		497		dataflow	42	4424	39 1308	2515320	0
ш	fromGraph			331	1.655E3		1		yes	0	0	197686	1673583	0
ш	▶ ⊚ gnn2dfs_loc_1			496	2.480E3		496		no	42	4422	172620	785082	0
ш	▶ ⊚ toGraph_Block_split100_proc205			480	2.400E3		480		no	0	2	7226	49627	0
ш	CVITIS_LOOP_1365_1			63	315.000	3		21	no					-
IL	CVITIS_LOOP_1400_3		-	22	110.000	3	1	21	yes	-	-	-	-	-

RNN/LSTM for track fit

% of zeros = 0.75

- ☐ The hits sorted by tracks from the pattern recognition GNN are fed into another neural network trained to fit the tracks.
- ☐ We tested DNN and RNN/LSTM neural networks. (thanks to Dylan Rankin for help)
- □ DNN is faster, but LSTM seems to be more reliable in the case of a stochastic distribution of hits on the track.
 - > The work on optimization of NN is ongoing.
- \Box The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 μ s.

== Utilization Estimat	es					== Utilization Estimat	es 				
* Summary:						* Summary:					
Name	BRAM_18K	DSP48E	FF	LUT	URAM	Name	BRAM_18K	DSP48E	FF	LUT	URAM
 Expression FIFO Instance Memory Multiplexer Register	- - 64 -	- - 4271 -	- 0 23258 - 2323	- 6 - 163672 - 955	- - - - -	DSP Expression FIFO Instance Memory Multiplexer Register	- - 64 -	- - - 1308 - -	- 0 - 12199 - 2147	- 6 - 53194 - 955	- - - - - -
Total	64	4271	25581	164633	0	Total	64	1308	14346	54155	0
Available SLR	1440	2280	788160	394080	320	Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	4	187	3	41	0	Utilization SLR (%)	4	57	1	13	0
Available	4320	6840	2864480	1182240	960	Available	4320	6840	2364480	1182240	960
Utilization (%)	1	62	1	13	0	Utilization (%)	1	19	~0	4	0

MLP neural network for PID

@par5

@par4

- After the track is fit, the ionization along the track can be counted.
- The distance along the track is divided into 10-20 bins, and the ionization energy in these bins is fed to the input of the MLP neural network.
- Typically neural network weights often have many zeros, thus, it is possible to reduce the size of the network by removing weights close to zero (~50%)

The network performance near the working value of 90% efficiency.

FPGA test bench (vcu118 board)

- ☐ Several version of IPs were synthesized and tested on FPGAs.
- ☐ The logic test was performed with the MicroBlaze processor.
- □ I/O data transfer is carried out through the ETH interface with the TCP/IP core.

Beam test at FermiLab

Calorimeter

Lead Tungstate (PbWO4) crystals

GEM-TRD

Micromegas TRD

Beam

☐ FermiLab test beam :

- > Primary beam: protons 120 GeV
- 4.2 seconds = length of spill
- 60 seconds = approximate rep rate of spill
- Beam intensity: Particles per spill: 10K 1M (pps)

Tracking performance

Tracking performance 2

Latency and rates (very preliminary)

- ☐ Although the system worked in principle, overall performance was quite poor:
 - > the board could process data at a speed of about ten hertz.
- ☐ The latency was determined by MicroBlaze's participation in the data exchange.
- □ So the next step was to synthesize the Control IP with the functionality of a C program running on MicroBlaze.
- \Box The IP block was synthesized directly using Vitis_HLS and the overall latency was reduced to 20 μs. (~50kHz).
- ☐ Control IP block primarily performs serial I/O.
- ☐ Therefore, it consists of long loops designed to accommodate the maximum data size.
- ☐ In reality, the average data size is much smaller, so the actual speed should be higher.
- ☐ This was confirmed in measurements peak performance reached 80 kHz.
- ☐ This is the first version, not yet optimized and II violations have not been fixed.

Modules & Loops	Issue Type	Slack	Latency(cycles)	Latency(ns)	teration Latency	Interval	Trip Count	Pipelined	BRAM	DSF	P FF	LUT	URAM
▼ ⊚ ctrl_s64s	👸 II Violation	-	4178	2.089E4	-	4179	-	no	8	:	4184	22984	0
C VITIS_LOOP_399_2			4	20,000	1	1	4	yes					
C VITIS_LOOP_443_3			1024	5.120E3	1	1	1024	yes					
C VITIS_LOOP_464_4			1025	5.125E3	3	1	1024	yes					
€ VITIS_LOOP_475_5	📆 II Violation		45	225.000	6		21	yes					
C VITIS_LOOP_479_7	⑪ II Violation		43	215.000	4		21	yes					
CVITIS_LOOP_484_9_VITIS_LOOP_484_10			45	225.000	5	1	42	yes					
C VITIS_LOOP_503_11			7	35.000	5	1	4	yes					
♥ VITIS_LOOP_508_12			21	105.000	1	1	21	yes					
C VITIS_LOOP_523_13			27	135.000	3	1	26	yes					
C VITIS_LOOP_540_14			21	105.000	1	1	21	yes					
C VITIS_LOOP_542_15			22	110.000	3	1	21	yes					
C VITIS_LOOP_562_16	📆 II Violation		804	4.020E3	45		20	yes					
C VITIS_LOOP_626_20			44	220.000	3	2	21	yes					
♥ VITIS_LOOP_642_21			1025	5.125E3	3	1	1024	yes					

New board design with Control IP

- ☐ All data I/O operations are performed by Control IP
- ☐ Microblaze is only used to configure the board and monitor data processing.
- ☐ Aurora interface provides communication with a second FPGA board that processes the calorimeter data (CNN).
- □ 10 Gigabit Ethernet uses TCP/IP, receives data from detectors (DAQ) and sends pre-processed data to the computer (farm).

FPGA board resources for GEMTRD

- ☐ Neural networks use a lot of FPGA resources.
- ☐ Therefore, one VCU118 board can only process data from GEMTRD.
 - > See pictures on the right

4/23/24

- ☐ The calorimeter uses CNN to process its data and currently occupies the entire VCU118 board.
- ☐ Calorimeter FPGA board has its own 10 Gb ethernet and Aurora interfaces.

ML for Calorimeter

Calorimeter parameters reconstruction

By Dmitry Romanov

- Convolutional VAE as a backbone
- Modules deposits as inputs
- Per cluster output of multiple values:
- Energy, e/ π , coordinates, features

Examples of events with e and π^- showers and μ^- passing through.

CNN for calorimeter reconstruction

- ightharpoonup In this work we used a convolutional encoder with a decoder consisting of dense layers, which provide e-π separation scores as the output.
- Synthesized with HLS4ML
- ★ This was done to minimize a network size in FPGA and due to current limitation of HSL4ML of supported network layer types.
- ♦ FPGA synthesis with reuse factor of 2 has a latency of 0.7μs and an interval of 125 clocks. It uses 74% of DPS resources

Actual values	Predicted results					
7 Actual values	e	π				
e	98.8 %	1.2 %				
π	2.9 %	97.1 %				

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	- -	 	-
Expression	j - j	_	0	2	- j
FIFO	404	_	8999	15698	-
Instance	61	5124	55854	243846	-
Memory	-	_	-	-	-
Multiplexer	-	-	-	-	-
Register	-	-	-	-	-1
Total	465	5124	64853	259546	0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	32	224	8	65	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	10	74	2	21	0
	T		/		

Calorimeter CNN optimization with HLS4ML


```
hls_config['Model']['Precision'] = 'ap_fixed<20,10>'
```

```
Layer prune_low_magnitude_conv_0: % of zeros = 0.5
Layer prune_low_magnitude_conv_1: % of zeros = 0.5
Layer prune_low_magnitude_conv_2: % of zeros = 0.5
Layer prune_low_magnitude_conv_3: % of zeros = 0.5
Layer prune_low_magnitude_dense_0: % of zeros = 0.5
Layer prune_low_magnitude_dense_1: % of zeros = 0.5
Layer prune_low_magnitude_output_dense: % of zeros = 0.5
Layer prune_low_magnitude_fused_convbn_0: % of zeros = 0.0
Layer prune_low_magnitude_fused_convbn_1: % of zeros = 0.0
Layer prune_low_magnitude_fused_convbn_2: % of zeros = 0.0
Layer prune_low_magnitude_fused_convbn_3: % of zeros = 0.0
Layer prune_low_magnitude_dense_0: % of zeros = 0.0
Layer prune_low_magnitude_dense_1: % of zeros = 0.0
Layer prune_low_magnitude_dense_1: % of zeros = 0.0
Layer output_dense: % of zeros = 0.0
```


JANA2 for ML on FPGA

Pre-processed data from the FPGA is transferred over the network (TCP/IP) to a computer running JANA2 software.

JANA4ML4FPGA

JANA2

(JLab ANAlysis framework)

- JANA2 is a multi-threaded modular event reconstruction framework being developed at Jlab for online and offline processing
- JANA2 is a rewrite based on modern coding and CS practices. Developed for modern NP experiments with streaming readout, heterogeneous computing and AI
- JANA2 is the main framework chosen for EIC. Used for ePIC collaboration reconstruction and further Detector 2. Used in multiple Jlab experiments and prototypes

JANA4ML4FPGA

Goals:

- Read and write EVIO
- Write flat ROOT files
- Receive EVIO by TCP (and save)
- Receive network streams
- Receive FPGA data
- Simulate sending detector data
- Data Quality Monitor
- Al streaming preprocessing
- Conventional preprocessing

Outlook

- ☐ An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics at the early stage of data processing.
- ☐ The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
- ☐ FPGA provides extremely low-latency neural-network inference.
- □ Open-source HLS4ML software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network algorithm development.
- ☐ The ultimate goal is to build a real-time event filter based on physics signatures.

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007

Measurement of multijet events at low \$x_{Bj}\$ and low \$Q^2\$ with the ZEUS detector at HERA

T. Gosau

Backup

ADC based DAQ for PANDA STT

Level 0 Open VPX Crate

ADC based DAQ for PANDA STT (one of approaches):

- 160 channels (shaping, sampling and processing) per payload slot, 14 payload slots+2 controllers;
- totally 2200 channels per crate;
- time sorted output data stream (arrival time, energy,...)
- noise rejection, pile up resolution, base line correction, ...

Single Virtex7 FPGA

- 160 Amplifiers;
- 5 connectors for 32pins samtec cables

- All information from the straw tube tracker is processed in one unit.
- Allows to build a complete STT event.
- This unit can also be used for calorimeters readout and processing.

https://doi.org/10.1088/1748-0221/17/04/C04022 2022_JINST_17_C04022

L. Jokhovets, P Kulessa ..

Powerful Backplane up to 670 GBs

A Brief Intro to Artificial Neural Network on FPGA

Image: https://nurseslabs.com/nervous-system/

- FPGA Field Programmable Gate Array .
- It can perform logical operation in parallel

Inference on an FPGA

IRIS-HEP th Febraury 13, 2019 Dylan Rankin [MIT]

- Modern FPGAs have DSP slices specialized hardware blocks placed between gateways and routers that perform mathematical calculations.
- The number of DSP slices can be up to 6000-12000 per chip.

Image from: https://www.embeddedrelated.com/showarticle/195.php

Optimization with hls4ml package

 A package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs.

