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EIC  streaming readout as motivation 
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✦ The correct location for the ML on the FPGA 
filter is called "FEP" in this figure.

✦ This gives us a chance to reduce traffic earlier.

✦ Allows us to touch physics: ML brings 
intelligence to L1.

✦ However, it is now unclear how far we can go 
with physics at the FPGA.

✦ Initially, we can start in pass-through mode.

✦ Then we can add background rejection.

✦ Later we can add filtering processes with the 
largest cross section.

✦ In case of problems with output traffic, we can 
add a  selector for low cross section processes.

✦ The ML-on-FPGA solution complements the 
purely computer-based solution and mitigates 
DAQ performance risks.
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Motivation for GlueX
q Real-time data processing is a frontier field in experimental particle physics. 
q The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real-time data 

processing.
q Many tasks, such as tracking and particle identification, could be solved using modern Machine Learning (ML) algorithms which are 

naturally suited for FPGA architectures.
q The work described in this report aims to test ML-FPGA algorithms in a triggered data acquisition system, as well as in streaming 

data acquisition, such as in the future EIC collider.
q The first target is the GlueX experiment, with a plan to build a Transition Radiation Detector (TRD) based on GEM technology (GEM-

TRD), to improve the electron-pion separation in the GlueX experiment. It will allow to study precisely reactions with electron-
positron pairs in the final states.

GEMTRD q GEM-TRD is supposed to be installed 
in front of the DIRC detector.

q Hall D is dedicated to the operation 
with a linearly-polarized photon 
beam produced by ~12 GeV electrons 
from CEBAF at Jefferson Lab.

q Typical L1 trigger rate 40-70 kHz
q Data rate 0.7 – 1.2  GB/s
q L1 Trigger latency 3.5 us.
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Generic EIC R&D project RD15, ML-(on)-FPGA

q Usually, several PID detectors are used in an experiment.
q For example, the GEM-TRD and e/m-calorimeter, both provide separation of electrons and hadrons.
q Summation and processing of joint data from both detectors at the early stages will increase the identification power of these 

detectors compared to independent identification.
q To test the “global PID” performance we work on  developing the ML-FPGA  setup for real-time data pre-processing.
q The setup consists of several PID and tracking detectors: emCAL, GEMTRD, GEM tracker.
q Preprocessed data from both detectors including decision on the particle type will be transferred to another ML-FPGA board with 

neural network for global PID decision. 
q The global filter transfers data to off-line computer farm, running  JANA2 software.
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FPGA test board for ML 

• At an early stage in this project, as hardware to test ML 
algorithms on FPGA , we use a standard Xilinx evaluation boards 
rather than developing a customized FPGA board. These boards 
have functions and interfaces sufficient for proof of principle of 
ML-FPGA. 

• The  Xilinx evaluation board includes the Xilinx XCVU9P and  
6,840 DSP slices. Each includes a hardwired optimized multiply 
unit and collectively offers a peak theoretical performance in 
excess of 1 Tera multiplications per second.

• Second, the internal organization can be optimized to the 
specific computational problem. The internal data processing 
architecture can support deep computational pipelines offering 
high throughputs. 

• Third, the FPGA supports high speed I/O interfaces including  
Ethernet and 180 high speed transceivers that can operate in 
excess of 30 Gbps.

Xilinx Virtex® UltraScale+™
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GEM-TRD  prototype for EIC R&D
• To demonstrate the operating principle of the ML FPGA, we use the existing setup 
• from the EIC detector R&D project 
• A test module was built at the University of Virginia
• The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a 

corresponding to a total of 512 channels for X/Y coordinates. 
• The readout is based on flash ADC system developed at JLAB (fADC125)  @125 MHz 

sampling.

• GEM-TRD provides e/hadron separation and tracking
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GEM-TRD principle

GEM-TRD can work as micro TPC, providing 3D track segments
q The e/pion separation in the GEM-TRD 

detector is based on counting the ionization 
along the particle track.

q For electrons, the ionization is higher due to 
the absorption of transition radiation photons

q So,  particle identification with TRD consists of 
several steps:

Ø The first step is to cluster the incoming 
signals and create "hits".

Ø The next is "pattern recognition" -
sorting hits by track.

Ø Finding a track
Ø Ionization measurement along a track
Ø As a bonus, TRD will provide a track 

segment for the global tracking system.
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GEMTRD  tracks
q In a real experiment, GEMTRD will have multiple tracks.
q So we also need a fast algorithm for pattern recognition 
q As well as for track fitting.
q The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
q And a recurrent neural network – LSTM,  for track fitting.

Javier Duarte 
arXiv:2012.01249v2 [hep-ph] 7 Dec 2020 

q HEP advanced tracking algorithms 
at the exascale (Project Exa.TrkX)

q https://exatrkx.github.io/

https://exatrkx.github.io/
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GEMTRD  tracks
q In a real experiment, GEMTRD will have multiple tracks.
q So we also need a fast algorithm for pattern recognition 
q As well as for track fitting.
q The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
q And a recurrent neural network – LSTM,  for track fitting.
q PID is based on measuring ionization along the track.

Javier Duarte 
arXiv:2012.01249v2 [hep-ph] 7 Dec 2020 

q HEP advanced tracking algorithms 
at the exascale (Project Exa.TrkX)

q https://exatrkx.github.io/

https://exatrkx.github.io/
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GNN for pattern recognition
q Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification. 

Ø These models read a graph of connected hits and compute features on the nodes and edges.
q The input and output of GNN is a graph with a number of features for nodes and edges.

Ø In our case we use the edge classification
q A complete graph on N vertices contains N(N - 1)/2 edges.

Ø This will require a lot of resources which are limited in FPGA. 
q To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.
q In our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.
q Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
q The trained GNN processes the input graph and sets the probability for each edge as output.
q The right plot shows edges with a probability greater than 0.7
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GNN performance 

q This type of graph neural network is not yet 
supported in HLS4ML.

q So we did a manual conversion first to C++ and then 
to Verilog using Vitis_HLS. 

q This neural network has not been optimized, so it 
consumes a lot of resources - 70% of DSPs, (4651 of 
6840). 

Ø At the moment it can serve up to 21 hits and 42 

edges, or ,  in our case (GEM-TRD),  it will be 3-5 

tracks.

q However, it performs all calculations in ~3 µs (left 
plot) (thanks to Ben Raydo), providing good purity 
and efficiency (right plot). 
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RNN/LSTM for track fit
q The hits sorted by tracks from the pattern recognition GNN are fed into another neural network 

trained to fit the tracks.
q We tested DNN and RNN/LSTM neural networks. ( thanks to Dylan Rankin for help )
q DNN is faster, but LSTM seems to be more reliable in the case of a stochastic distribution of hits 

on the track.
Ø The work on optimization of NN is ongoing.

q The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 µs.
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MLP  neural network for PID

Latency = 65ns

II = 5ns

DSP utilization 3%

q After the track is fit,  the ionization along the track can 
be counted. 

q The distance along the track is divided into 10-20 bins, 
and the ionization energy in these bins is fed to the input 
of the MLP neural network. 

q Typically neural network weights often have many zeros, 
thus, it is possible to reduce the size of the network by 
removing weights close to zero (~50%)

q The  network performance near the working value of 
90% efficiency.
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FPGA test bench (vcu118 board)

q Several version of IPs were synthesized and tested on FPGAs.
q The logic test was performed with the MicroBlaze processor.
q I/O data transfer is carried out through the ETH interface with the TCP/IP core.

GNN: Pattern recognition

LSTM:   Track fit 

DNN:  PID  module
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Beam test at FermiLab

Beam

GEM-TRD Micromegas TRDCalorimeter

q FermiLab test beam :
Ø Primary beam: protons 120 GeV 
Ø 4.2 seconds = length of spill
Ø 60 seconds = approximate rep rate of spill
Ø Beam intensity: Particles per spill :  10K – 1M  

(pps)

Lead Tungstate (PbWO4) crystals
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Tracking performance 
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 ML-FPGA response

z (drift time, 8ns FADC)
y (r/o strip, 0.4mm) q Top rows: show ionization along the 

track in GEMTRD detector.
Ø Red circles are reconstructed 

clusters using some dE/dx 
threshold. The size is 
proportional to energy.

q Middle rows: after filtering out the 
noisy clusters, the coordinates of the 
clusters are sent to the FPGA/GNN 
for pattern recognition.

q Bottom rows: GNN provides labeling 
of clusters (by color in the figure), the 
same colors belong to the same 
track.

q Then clusters of the same color (tag) 
are sent to the track fitting module: 
LSTM.

q The results of track fitting are 
represented by lines in the figures.

q The next step is to count all the 
ionization in the corridor around the 
track and send it to the PID module 
(DNN).

q As a bonus, GEMTRD provides a track 
segment for the global tracking 
system.
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Tracking performance 2
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q Top rows: show ionization along the 
track in GEMTRD detector.

Ø Red circles are reconstructed 
clusters using some dE/dx 
threshold. The size is 
proportional to energy.

q Middle rows: after filtering out the 
noisy clusters, the coordinates of the 
clusters are sent to the FPGA/GNN 
for pattern recognition.

q Bottom rows: GNN provides labeling 
of clusters (by color in the figure), the 
same colors belong to the same 
track.

q Then clusters of the same color (tag) 
are sent to the track fitting module: 
LSTM.

q The results of track fitting are 
represented by lines in the figures.

q The next step is to count all the 
ionization in the corridor around the 
track and send it to the PID module 
(DNN).

q As a bonus, GEMTRD provides a track 
segment for the global tracking 
system.
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Latency and rates (very preliminary)
q Although the system worked in principle, overall performance was quite poor: 

Ø the board could process data at a speed of about ten hertz. 
q The latency was determined by MicroBlaze's participation in the data exchange.

q So the next step was to synthesize the Control IP with the functionality of a C program running on MicroBlaze.

q The IP block was synthesized directly using Vitis_HLS and the overall latency was reduced to 20 µs.  (~50kHz).

q Control  IP block primarily performs serial I/O. 

q Therefore, it consists of long loops designed to accommodate the maximum data size. 

q In reality, the average data size is much smaller, so the actual speed should be higher. 

q This was confirmed in measurements - peak performance reached 80 kHz.

q This is the first version, not yet optimized and II violations have not been fixed.
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New board design with Control IP 

aurora_64b66b_0

Aurora 64B66B

USER_DATA_S_AXIS_TX USER_DATA_M_AXIS_RX

GT_DIFF_REFCLK1 CORE_STATUS

CORE_CONTROL GT_SERIAL_TX

GT_SERIAL_RX QPLL_CONTROL_OUT

axi_smc

AXI SmartConnect

S00_AXI

S01_AXI
M00_AXI

axis_dwidth_converter_0

AXI4-Stream Data Width Converter

S_AXIS M_AXIS

axis_dwidth_converter_1

AXI4-Stream Data Width Converter

S_AXIS M_AXIS

axis_dwidth_converter_2

AXI4-Stream Data Width Converter

S_AXIS M_AXIS

axis_dwidth_converter_3

AXI4-Stream Data Width Converter

S_AXIS M_AXIS

ctrl_s64s_0

Ctrl_s64s (Pre-Production)

in_s0_V

out_s0_V

in_s1_V

out_s1_V

in_s2_V

out_s2_V

in_s3_V

out_s3_V in_s4_V

out_s4_V in_s5_V

out_s5_V

fifo_generator_0

FIFO Generator

M_AXISS_AXIS

fifo_generator_1

FIFO Generator

M_AXISS_AXIS

fifo_generator_2

FIFO Generator

M_AXISS_AXIS

gemtrd3f_0

Gemtrd3f (Pre-Production)

in_s_V_V out_s_V_V

gnn2dfs2_0

Gnn2dfs2 (Pre-Production)

in_s_V out_s_V

lstm3_0

Lstm3 (Pre-Production)

in_s_V_V out_s_V_V

mdm_1

MicroBlaze Debug Module (MDM)

MBDEBUG_0

microblaze_0

MicroBlaze

INTERRUPT

DLMB

ILMB

M_AXI_DP

M0_AXIS
S0_AXIS

M1_AXIS
S1_AXIS

M2_AXIS
S2_AXIS

M3_AXIS
S3_AXIS

M4_AXIS
S4_AXIS

M_AXI_DC

M_AXI_IC

DEBUG

microblaze_0_axi_intc

AXI Interrupt Controller

s_axi interrupt

microblaze_0_local_memory

xxv_ethernet_0

10G/25G Ethernet Subsystem

gt_serial_port
gt_ref_clk

mii_rx_0
mii_tx_0

ctl_rx_0
stat_tx_0

stat_rx_0

q All data I/O operations are performed by Control IP
q Microblaze is only used to configure the board and monitor data processing.
q Aurora interface provides communication with a second FPGA board that processes the calorimeter data (CNN).
q 10 Gigabit Ethernet uses TCP/IP, receives data from detectors (DAQ) and sends pre-processed data to the computer (farm).

10 Gb TCP/IP 

Aurora interface

Control IP

Neural network IPs for data processing 
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FPGA board resources for GEMTRD

q Neural networks use a lot of FPGA resources.
q Therefore, one VCU118 board can only process 

data from GEMTRD.
Ø See pictures on the right

q The calorimeter uses CNN to process its data and 
currently occupies the entire VCU118 board.

q Calorimeter FPGA board has its own 10 Gb 
ethernet and Aurora interfaces.
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ML for Calorimeter



Calorimeter parameters reconstruction

π−

e

μ−

Examples of events with e and π−

showers and μ− passing through.

PbWO4 20 cm

Geant 4 simulation

Per cluster values: energy, 
pid, x, y, features

Encoder De
co

de
r

CR

Clusters

Modules deposits

Convolutional variational autoencoder

• Convolutional VAE as a backbone
• Modules deposits as inputs
• Per cluster output of multiple values:
• Energy, e/ π, coordinates, features 

By Dmitry Romanov
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CNN for calorimeter reconstruction
✦ In this work we used a convolutional encoder with a decoder 

consisting of dense layers, which provide e-π separation scores as the 
output. 

✦ Synthesized with HLS4ML
✦ This was done to minimize a network size in FPGA and due to current 

limitation of HSL4ML of supported network layer types. 
✦ FPGA synthesis with reuse factor of 2 has a latency of 0.7μs and an 

interval of 125 clocks. It uses 74% of DPS resources 
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Calorimeter CNN optimization with HLS4ML
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hls_config['Model']['Precision'] = 'ap_fixed<20,10>'
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JANA2  for ML on FPGA

Pre-processed data from the FPGA is transferred over the 
network (TCP/IP)  to a computer running JANA2 software.
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JANA4ML4FPGA

Validation software

Detector

FPGA

JANA2
(JLab ANAlysis framework)

- JANA2 is a multi-threaded modular event reconstruction 
framework being developed at Jlab for online and offline 
processing

- JANA2 is a rewrite based on modern coding and CS practices. 
Developed for modern NP experiments with streaming 
readout, heterogeneous computing and AI

- JANA2 is the main framework chosen for EIC. Used for ePIC
collaboration reconstruction and further Detector 2. Used in 
multiple Jlab experiments and prototypes
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JANA4ML4FPGA

JA
N

A
4M

L4FPG
A

EVIO

ROOT

FPGADetector

Goals:

- Read and write EVIO 

- Write flat ROOT files

- Receive EVIO by TCP (and save)

- Receive network streams 

- Receive FPGA data

- Simulate sending detector data

- Data Quality Monitor

- AI streaming preprocessing

- Conventional preprocessing
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Outlook
q An FPGA-based Neural Network application would offer online event preprocessing  and allow for data reduction based on physics 

at the early stage of data processing.
q The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
q FPGA provides extremely low-latency neural-network inference.
q Open-source HLS4ML software tool with Xilinx® Vivado® High Level Synthesis (HLS)  accelerates machine learning neural network 

algorithm development.

q The ultimate goal is to build  a real-time event filter based on physics signatures.
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Backup
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ADC based DAQ for PANDA STT

6. June 2018 Seite 

30

• 160 Amplifiers;

• 5 connectors for 32-

pins samtec cables

Level 0  Open VPX Crate
ADC based DAQ for PANDA STT (one of approaches):
• 160 channels (shaping, sampling and processing) 

per payload slot, 14 payload slots+2 controllers;
• totally 2200 channels per crate;
• time sorted output data stream (arrival time, energy,...)
• noise rejection, pile up resolution, base line correction, ..

Powerful Backplane 

up to 670 GBs

L. Jokhovets, P Kulessa ..

• 40 4-channel ADCs 

(configurable up to 1 GSPS);

• Single Virtex7 FPGA

✦ All information from 
the straw tube tracker 
is processed in one unit.

✦ Allows to build a 
complete STT event.

✦ This unit can also be 
used for calorimeters 
readout and processing.

https://doi.org/10.1088/1748-0221/17/04/C04022
2022_JINST_17_C04022

https://doi.org/10.1088/1748-0221/17/04/C04022
https://doi.org/10.1088/1748-0221/17/04/C04022
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A Brief Intro to Artificial Neural Network on FPGA
Image:  https://nurseslabs.com/nervous-system/

IRIS-HEP th Febraury 13 , 2019 Dylan Rankin [MIT] 
Image from: https://www.embeddedrelated.com/showarticle/195.php

• FPGA  Field Programmable Gate Array .
• It can perform logical operation in parallel

• Modern FPGAs have DSP slices - specialized 
hardware blocks placed between gateways and 
routers that perform mathematical calculations. 

• The number of DSP slices can be up to 6000-
12000 per chip.
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Optimization with hls4ml package
• A  package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning 

models in FPGAs. 
article: J. Duarte et al 2018 JINST 13 P07027 


