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CBM Experiment

* Compressed Baryonic Matter (CBM) is currently being constructed at FAIR accelerator facility in Darmstadt.
* Highest baryon densities will be created and the properties of super-dense nuclear matter will be explored.

* The experimental program of CBM is to measure a large number of observables at various beam energies and
different collision systems. Many of them are extremely rare, like multi-strange anti-hyperons, open and hidden charm.
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The CBM setup: target, dipole magnet, Micro Vertex Detector (MVD), Silicon Tracking System (STS), Ring Imaging Cherenkov (RICH),
Muon Chambers (MuCh), Transition Radiation Detector (TRD), Time-Of-Flight (TOF), Electromagnetic Calorimeter (ECAL), Projectile
Spectator Detector (PSD)

Such a multifunctional and versatile structure of the detector setup will make it possible
to study the most complex processes in the collision of heavy ions



Reconstruction Challenge in CBM
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(2) Detection

* Future fixed-target heavy-ion experiment at FAIR

* Explore the phase diagram at high net-baryon densities

107 Au+Au collisions/sec

~ 1000 charged particles/collision |

* Non-homogeneous magnetic field

Double-sided strip detectors |

* 4D reconstruction of time slices. |
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The full event reconstruction will be done
on-line at the First-Level Event Selection (FLES) and
off-line using the same FLES reconstruction package.

* Cellular Automaton (CA) Track Finder \| Event Selection
 Kalman Filter (KF) Track Fitter
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* KF short-lived Particle Finder ( Monte-Carlo )_»( Output )_»
+

All reconstruction algorithms are vectorized and parallelized.




ANN4FLES: ANNSs for First Level Event Selection
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ANN4FLES is a fast C++ package designed for use of Artificial Neural Networks (ANN) in the CBM experiment.
It provides a variety of network architectures with minimal additional programming required.

The package includes a Graphical User Interface (GUI) for network selection and hyperparameter adjustment.
* Implemented networks in ANN4FLES include:

» Multilayer Perceptron (MLP),

+ Convolutional Neural Network (CNN),

» Recurrent Neural Networks (RNN),

» Graph Neural Networks (GNN), and

» Bayesian Neural Network (BNN).
» Extensive testing on datasets like MNIST, CIFAR, Cora, etc., has been performed and compared with PyTorch.



ANN assisted CA Track Finder

(2) Detection

Kalman Filter (KF) based Cellular Automaton (CA) track finder is extremely
good at finding most tracks except low-p secondary tracks. But these tracks
are important for physics!

KF uses the target vertex to fit tracks which makes it lose some secondary
tracks.

Supplement the KF with a neural network which finds triplets from the
leftover hits.

The triplet to track construction phase remains the same.

A simple Multi-Layer Perceptron (MLP) which takes as input the coordinates
of three hits and classifies it as a true or false triplet was implemented into
the standalone CA Track Finder.

Event display shows reconstructed tracks

(3) Reconstruction

Reconstructed in red, MC in black

Future: Replace MLP with a Graph Neural Network (GNN)




ANN for Ring Finding in RICH High Density Regions
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ANN is capable to find rings in high density regions



KF Particle Finder for Online Analysis and Selection
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ANN based Particle Competition in the KF Particle Finder

Charged particles: e*, p*, nt, K*, p*, d*, 3He*, “He*
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A Multilayer Perceptron is used to solve the particle competition in KF Particle Finder
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T

Entries

| 1>_<103 -% o =1.5 MeV/c?
2 L S/B = 259
»fi E
=
0l A—pr*
£=57.0%
0 i1 i2 ‘
- 2
m,  {pr*} [GeV/cT] |
Y
- -=" o= 1.6 MeV/c?
2 S/B=10.8
=
=
—t  —
20 = —Ar*
£=47.6%
0 13 14
— 2
m,  {An*} [GeV/c]

2ﬁx103 —= o =2.0 MeV/c?
S/B=24.8
L E-% :
ol AT
€ =44.4%
0 13 14

m.  {Ax} [GeV/c?]

mv

-Q 0 =2.2 MeV/c?

Entries

72}

-2400- S/B =928

N

=

=
Q—=AK

2001
I £€=44.2%
i;.6 11.7 1.8

m, {AK’} [GeV/c’]

mv

AuAu, 10 AGeV, 3.5M central UrQMD events, MC PID

Entries

Clean Probes of Collision Stages

—K? 5 =3.6 MeV/c?

S/B = 190

K—sntm

£€=66.1%

x10°

0.6

m, . {r*7} [GeV/c?]

mv

—A o =1.6 MeV/c?

S/B = 269

A— pmt
€=63.5%

RT-2024, Quy Nhon, Vietnam, 23.04.2024

1 I.Z
m, {prn’} [GeV/cz]

9/15



Quark-Gluon Plasma (QGP)
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+ Nature of QGP: A state of matter consisting of deconfined quarks and gluons that exists at extremely high temperatures and
densities.

+ Formed in collisions: Created in heavy ion collisions when nuclei collide at high energies, potentially recreating conditions
similar to those just after the Big Bang or at the centers of neutron stars.

« Study in the CBM experiment: The CBM experiment aims to study the properties of QGP by observing how it behaves under
conditions of high baryonic density.

+ Direct observation of QGP is not possible: QGP cannot be observed directly because of its extremely short lifetime and its
rapid transformation into hadronic matter. Conclusions about its properties are drawn from indirect data obtained from post-
collision phenomena.

* Relying on new particles as probes: To study QGPs, particles such as mesons and baryons produced in collisions are
analyzed. The behavior of these particles provides insight into the characteristics of QGPs.

+ Event classification using the PHQMD model: Events are classified by analyzing particles generated using the Parton-
Hadron Quantum Molecular Dynamics (PHQMD) model. This model simulates the dynamics under extreme conditions and
helps to understand the properties and phase transitions of QGPs.

A QGP Trigger is important for online selection of interesting collisions
Ivan Kisel RT-2024, Quy Nhon, Vietnam, 23.04.2024 10/15



Fully-Connected Neural Networks (FCNN)
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Structure of one-, two- and three-layer Fully-Connected Neural Networks used for QGP detection

3-layer FC NN Performance

1-layer FC NN Performance 2-layer FC NN Performance
100+ @m0 ——O———-O-———O———O———0 100+ ¢~ 2#0—==0-==-0-———0———0-——-0-———0-—-0 100+ ¢ - = z0==—0———0——0——0———0——0———0
/ o~ [ae
/ ] [
/ PHQMD i PHQMD PHQMD
/ i i
90f / 90} " 90t u
/ I "
I ] "
—_ ! —_ i —_ "
X / X ‘;;' X i
— e e — L — i ————g= —e
> 80r R —————o— = 80 L= e > 808 e "
) 9 I 9 0
© ] © ) © [
o i o I 4 H
3 / ! H 2 H
O 701 O 70 I O 70 ]
2 3 < J 2 §
60 60 60+
—-0-—' ANNA4FLES training accuracy = —e— validation accuracy —-0-—' ANNA4FLES training accuracy = —e— validation accuracy —--0-—- ANN4FLES training accuracy = —e— validation accuracy
—-o-— PyTorch training accuracy —=e— validation accuracy —-o-— PyTorch training accuracy —e— validation accuracy —--o-—- PyTorch training accuracy —=e— validation accuracy
L L L L L L L L L L L L L L L
505 2 ) 6 8 10 12 30 2 7 6 8 10 12 50 2 4 6 8 10 12
Epoch Epoch Epoch

Training and validation accuracy for the FCNN networks

A Fully-Connected Neural Network (FCNN) based QGP Trigger is not feasible



Convolutional Neural Network (CNN)

CNN Performance
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A Convolutional Neural Network (CNN) based QGP Trigger is feasible



Interpretable ANN: Shapley Additive Explanations

Method based on cooperative game theory used to increase transparency and interpretability of machine learning models.

For each feature, SHAP score is determined by evaluating the average contribution of adding the feature over all possible feature
subsets defined without that feature.
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 Light particles are important for model prediction
« Anti-baryons more important than baryons per particle

From theory we expect QGP formation to involve
« more strange quarks
« more anti-baryons than baryons

SHAP analysis reveals that ANN has learned the correct characteristics associated with QGP production



Interpretable ANN: Shapley Additive Explanations

Method based on cooperative game theory used to increase transparency and interpretability of machine learning models.

For each feature, SHAP score is determined by evaluating the average contribution of adding the feature over all possible feature
subsets defined without that feature.
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SHAP analysis reveals that ANN has learned the correct characteristics associated with QGP production




Summary

« A C++ package of Artificial Neural Networks for the First Level Event Selection (ANN4FLES) was created for the CBM
experiment.

« All networks implemented in the package have been successfully tested on a number of standard datasets and show
comparable results to the PyTorch library.

« The ANN4FLES package is now being investigated for various reconstruction and analysis tasks in the CBM FLES
package.

« The implementation of a Quark-Gluon Plasma (QGP) trigger based on a Convolutional Neural Network (CNN) is feasible.

« The behavior and results of ANNs can be interpreted more transparently using Shapley's additive explanations, a method
that assigns each input feature a value representing its contribution to the final prediction, thereby clarifying how different
features influence the model's decisions.

Ivan Kisel RT-2024, Quy Nhon, Vietnam, 23.04.2024 15/15



