. Rl KEN
JNI HINA
d4Y C E N R

High-speed data processing in the RIBF DAQ system
using the Alveo data-center accelerator card

Yuto Ichinohe (RIKEN Nishina Center)

Hidetada Baba (RIKEN Nishina Center), Shoko Takeshige (Rikkyo Univ.), Taku Gunji (CNS)

24th IEEE Real Time Conference — ICISE, Quy Nhon, Vietham
2024.4.23

RIKEN Radioactive Isotope Beam Factory (RIBF)

1. Highest intensity Rl beam

* secondary beam intensity: < 1e7 cps
* mixture of multiple species of Rls

2. Rl Identification
* BigRIPS (RI fragment separator)

3. Physics measurement

Production of Rl beam
(highest intensity)

1% beam (B~ 0.7) In-flight fission S

/

N
n
rTTTYTETTYTY

-
[}
Y

W
N
rrYY

S
i
E
2
2
g

rTrTTTTT T TTTYY

Mass-1o-charge ratio (4Q)

Beamline detectors to
identify various Rls

ﬁ_’@‘_’mﬁ _:g‘
ol g

Secondary

("Cu, ¥Zn)

~.\ ‘ s] n:"
o yor N
w S8Ys 2 < I _ (SRC) Superconducting Ring Cyclotron
- k’./.\\ '.:: l

; High intensity 55U beam

Secondary reaction target
FO (Production target) F11

‘ (MINOS, DALI2) |:10V0u.\
- 7 o — ‘ 7- w =
“‘...f?.u .fli;.\’ e F7_F8y

- -b.w ee\

"~ BigRIPS ("Cu, *Zn) \ T
*
~100m

Nuclear reaction measurement

beam

recoilled proton

stripped electron
Reaction products
e.g., "*Ni

target

PPAC x 2 PPAC x 2 PPAC x 2

Plastic scintillation counter Plastic scintillation counter
lon chamber/S1 detectors
Ge detectors

BigRIPS
°)N

‘ MG 5;;:,: F6
o @ g & Ny @
Rl beam Projectile-fragment Separator ® o BTG
3 Degrader |
3 ® AE
3 Bp (F3-F5) Bp (F5-F7)
O
. Degrader I 2 (f1; ath = ¢ l
Beamline detectors for PID . TOF (tlight path = 46.6 m)

* Plastic scintillator (F3, F7) Borticle identification d
« PPAC (F3, F5, F7) article identification diagram

* lon chamber (F7) Each “island”
Concept of the PID using BigRIPS 1o
* TOF between F3 Plastic and F7 Plastic — 3 N
* Particle transfer from F3 PPAC to F5 PPAC — Bp © 3 10°
* Energy lossinF7IC+B = Z g
* Bp+ B — A/Q 2 107

S

<
Extract desired Rlis using the particle identification 10
diagram for physics measurement (offline analysis)

PR A L - 1

T A | R T ' Al I
2.5 2.6 2.7 2.8
Mass-to-charge ratio (A/Q)

Real-time data processing in RIBF DAQ

Goal: Streaming “physical” quantities
e.g., TOF, Position, AE (calibrated, analyzed), PID info

* Currently, the same procedure is performed individually by
each experimental group (redundant) = standard PID without o
overheads @etectorg | , | : CScience dataD

* Currently, simple discriminator triggers are mostly used (low
level) — trigger based on e.g., PID information (Detecm@ (Science data)

e Currently, PID DAQ system can only be used exclusively
(inefficient) — the official PID DAQ stream which can be
subscribed by multiple experimental groups at the same time

What kind of hardware is suitable?
* FPGA may be the choice for real-time analysis of streaming data

* Manually implementing a complicated task such as PID in FPGA with HDLs is nightmare ...

_}
4

“Adaptable Accelerator Cards for Data Center Workloads”
* Enhancing the host server capability with FPGA through easily
installable PCI Express interface

Alveo U50 (~$3500)
* Parallelly accessible 8GB (256MB x 32) HBM

* High-bandwidth, large data can be stored close to FPGA
e Direct external connectivity with a QSFP28 port

Vitis Unified Software Platform

 Covers most of the development flow of applications that
invokes FPGA kernels from the host CPU (C++ simulation, HLS,
RTL / C++ co-simulation)

1. Most of the application framework are provided

* Users can focus only on thinking how to exploit the FPGA
power and writing C++ codes

AMD (Xilinx) Alveo series

The Alveo U25N SmartNIC delivers a true convergence of The Alveo U30 media accelerator card provides low latency

network and security acceleration functions, including OVS and video processing (32ms for 4Kp&0) for live streaming,
IPsec, into a single platform. supporting mainstream H.264 and H.265 standards and also

The 2x 100G Alveo U45N network accelerator offloads se
CPUs from infrastructure workloads in the data center. FPQ

designers can implement custom OVS, IPsec ,and other
functions with the ability to adapt to evolving use cases.

\Z Architecture

Incredible compute, networking, and storage acceleration Offers 1.3M Fo r m Fa Cto r
thanks to 890k LUTs, 5.9k DSP slices, 64GB of DDR4 memory, dual 100Gby
and dual 100Gbps network interfaces. performancs

costs.

Look Up Tables
HBM2 Memory

HBM2 Bandwidth

Host CPU Programmable Logic

ce
User Application User Kernels
(CIC++) (C/IC++, RTL)
XRT APls AXI Interfaces
XRT Drivers Hardware Platform n

The Alveo MA35D delivers ultra-low latency (8ms for 4Kp60)
video processing for live streaming, supporting the next-
generation AV1 codec standard and mainstream H.264 and
H.265 formats.

Built for HPC and Big Data applications, the Alveo U55C
accelerator is the most powerful Alveo card ever from AMD.

FEATURES ALVEO U50

UltraScale+

Half-Height, Half
length
single slot Low-Profile

872,000
8GB
316GB/s"
1 x QSFP28 (100GbE)?

|[EEE 1588

PCle Gen3 x 16, dual
PCle Gen4 x 8, CCIX

Passive

75W

Sample hardware-accelerated codes of major tasks/libraries

are available

 BLAS, Data science (random forest, SVM, K-means),
compression, Matrix decomposition etc...

Example: GZIP compression

e ~12 sec for 2.5 GB compression
e cf. ~75 sec with 3.7 GHz Core 9
 Decompression is slower than CPU...
e Data size limited by HBM (compressed + decompressed < 8 GB)

Confirmed the effect of hardware acceleration (although there
are room for improvements...) = Practical application

Domain-Specific
Libraries

o B @ |]

Medical Vision and Quantitative Data Analytics

Benchmark: Hardware acceleration of GZIP

ARIE

Graph Data Data

Architecture

LZ4 Streaming

Snappy Streaming

GZip/Zlib 32KB Memory Mapped

GZip 32KB Compress Stream

GZip 16KB Compress Stream

GZip 8KB Compress Stream

GZip Fixed 32KB Compress Stream

Zlib 32KB Compress Stream

Zlib 16KB Compress Stream

Zlib 8KB Compress Stream

Zlib Fixed 32KB Compress Stream

Zstd Compress Quad Core

: : 2 Imaging Image Finance and Database Compression Security
— ,Q
Al Ecosystem
Partner Libraries ()
| L A .
+ - Qa o
X = D 0{2}0
Common
Libraries Solver Basic Linear Sparse DSP Utiliti
Algebra
Subroutines (BLAS)
Edg On-Premise Cloud
Deployment Deployment Deployment

RIBF PID using Alveo

Tentative goal: Reproducing PID results identical to those derived by anaroot
(standard software for the RIBF data analysis)

Formulation (TOF-Bp-AE method)
1. Input: raw data segment of PPAC3, PPACS, PPAC7, PL3, PL7, IC7
2. Output: two double values corresponding to A/Q & Z

3. PPAC: 4 PPACs/ FP (F3, F5, F7)

* Raw data — positions of interaction
* interaction positions + detector positions — position & direction of charged particles (least square) at each focal plane
* Particle transfer between two focal planes — Bp

4. Plastic scintillator: 2 PMs / FP (F3, F7)
e passage time of Rl (average of two PMs) PPAC x 2 PPAC x 2 PPAC x 2

i passage tlme dlﬁerence — TOF — B Plastic scintillation counter \ Plastic scintillation counter

- lon chamber/S1 detectors
é \\ Ge detectors
5. lon chamber: 6 ICs / FP (F7) F1 A\ - \
* AE (- : : = - F4 SR = \
correct for pedestal + geometric mean + linear transformation) = F2 F3) N ¢ S Wk, (F7
g \ &@Mae)-f—-:&#@' Deorade f&&{-y{-
o = grader o .
g N) D AE
6. PID ‘3’ Degrad : B/J(F.};FS‘) . . Bp (F5-F7) :
° B + Bp — A/Q cgrader ['OF (flight path = 46.6 m)

* AE + 3 + Bethe-Bloch formula — Z

High-level synthesis overview

Starting from C++ codes based on anaroot...

Step 1: Refactoring of the C++ codes such that the codes conform to the
specification of HLS toolkit

e ROOT dependency is removed

* Dynamic memory allocation is removed

Step 2: Tuning the C++ codes to assist the toolkit in inducing efficient RTL codes

 Adding compiler directives (e.g., HLS PIPELINE: making a for loop pipelined,
HLS INLINE: making a function in-line)

 Dataflow — splitting a task into smaller sub-tasks and connect them using
pipeline registers (assisting task-parallelization)

Step 3: Converting the codes into RTL codes using the Vitis HLS toolkit

RTL codes can be obtained
e can be used as same as those generated from HDL codes

#p
#p

#p

const int nthunk) {

loop_ppac_op: for (int i = @; i < nchunk; ++i) {

ragma HLS PIPELINE

ragma HLS LOOP_TRIPCOUNT min=MIN max=MAX

ragma HLS ALLOCATION function instances=compute_x_a limit=1

double _f3_x_1la = f3_x_la.read(Q);

double _f3_x_1b = f3_x_1b.read(Q);

double _f3_x_2a = f3_x_2a.read();

double _f3_x_2b = f3_x_2b.read(Q);

double _f3_f_la = f3_f_la.read();

double _f3_f_1b = f3_f_1b.read();

double _f3_f_2a = f3_f_2a.read(Q);

double _f3_f_2b = f3_f_2b.read(Q);

compute_x_a(_f3_x_1la, _f3_f_la, _f3_x_1b, _f3_f_1b, _f3_x_2a, _f3_f_2a, _f3_x_2b, _
f3_opx, f3_opa,
p_f3_la, p_f3_1b, p_f3_2a, p_f3_2b);

double _f5_x_1la = f5_x_1la.read(Q);

TR MYIM 1IeD 2 NEA YU LD L= CYPS—1 LIV uSp -
#pragma HLS STREAM variable=f7t type=fifo depth=3
#pragma HLS STREAM variable=f7s type=fifo depth=3
#pragma HLS STREAM variable=_aoq type=fifo depth=2
#pragma HLS STREAM variable=_z type=fifo depth=2
#pragma HLS DATAFLOW
const ppac_params p_f3ppac_la = p.f3ppac_1la;
const ppac_params p_f3ppac_1b = p.f3ppac_1b;
const ppac_params p_f3ppac_2a = p.f3ppac_2a;
const ppac_params p_f3ppac_2b = p.f3ppac_2b;
const ppac_params p_fSppac_la = p.fSppac_1la;
const ppac_params p_fSppac_1b = p.fS5ppac_1b;
const ppac_params p_fSppac_2a = p.fSppac_2a;
const ppac_params p_fSppac_2b = p.fSppac_2b;
const ppac_params p_f7ppac_la = p.f7ppac_1la;
const ppac_params p_f7ppac_1lb = p.f7ppac_1b;
const ppac_params p_f7ppac_2a = p.f7ppac_2a;
const ppac_params p_f7ppac_2b = p.f7ppac_2b;
const pl_params p_f3pl = p.f3pl;
const pl_params p_f7pl = p.f7pl;
const ic_params p_f7ic = p.f7ic;
const pid_params p_pid = p.pid;

load_ppac(data_f3ppac, f3ppac, nchunk);
load_ppac(data_fSppac, fSppac, nchunk);
load_ppac(data_f7ppac, f7ppac, nchunk);
load_pl(data_f3pl, f3pl, nchunk);
load_pl(data_f7pl, f7pl, nchunk);
load_ic(data_f7ic, f7ic, nchunk);

loop_ppac_xf(f3ppac, fSppac, f7ppac,
f3_x_1la, f3_f_1la, f3_x_1b, f3_f_1b, f3_x_2a, f3_f_2a, f3_x_2b, f3_f_2b,
f5_x_1la. f5_f_la. f5_x_1b. f5_f_1b. f5_x_2a. f5_f_2a. f5_x_2b. f5_f_2b.

oooooooooooo

- - [] -
Real Ized R I L d atafl Ow Output from the official dataflow viewer

ooooooooooo

Independent task
gy F5, F7 PPAC B e wel N
 each is implemented as an F7PL

individual FPGA design 3 PPAC load ‘I m F7 IC load

* every task runs parallelly

., ‘,’ ., ..l'aW’ raw raw
“ ,“’ l *
., A PPAC c:al+anaJJ PL cal+ana
4 PPAG layors
g“ ‘“ ., + + + + J—| . _ _
4 PPAC reco Pipeline register
/ / l (FIFO)
F3x! (F5a; iF5x. iF7a (F7x

e R

trajectory| |trajectory

Performance

P xrt
X ‘TimelineTrace ‘
Q @ @ @ X T £ ¥ o Il o Board initialization ~107ms
Name Value 0.000000 ms 20. 000000 ms 40, 000000 ms 60, 000000 ms 50. 000000 ms 100, 000000 ms 120.000000 ms 140, 000000 ms 160, 000000 ms 1580. 000

lllllllll Illlllllll lllllllllllllllllll lllllllllllllllllll lllllllllllllllllll lllllllllllllllllll lllllllllllllllllll lllllllllllllllllll lllllllll[lllllllll lllllllllllllll 11 1 111 1 1
o o

Native APl Host Trace
Native XRT API Calls

Host to Device Data Transfers

Data transfer from Main loop ~13ms
Achieved clock frequency: 220 MHz host to Alveo ~14ms

Achieved latency
* ~1000 clks = ~4.3 us @ 220 MHz
* x10 slower compared to the latency 450 ns with CPU (core i9-10900X, single thread)

Achieved pipeline processing
* |l =5 clks = throughput 44 MHz @ 220 MHz
* cf. CPU throughput: 2.2kHz —

 Overheads (board init., data transfer etc.) should be removed, e.g. by data streaming, for practical use

10

Implications |

Before pipelining | A [B] ¢ A [B] C A[]BJC

Iteration Latency = 60

Task parallelization | A [B | €

II=20

A B C

Huge speed-up (throughput) can be expected

A B C

Total Latency = 100

e cf. CPU: enhancing clock frequency
» cf. GPU: data-parallelization Pipeline processing | A LB | €

FPGA: task-parallelization

 Rather complicated tasks can be realized as dedicated hardware
* Independent, multiple kind of tasks can be completely parallelized
* Pipelined with ll~a few leads to huge gain in throughput lk = - ld
— 7 dV anta g eous wh en th e tas k CONS i sts Of mu Iti p | e,r ath er com p | ex % I LT FL% é 1
subtasks, which need to be executed in an organized manner

aa

Streaming data can be analyzed with very little overheads
« Direct external connectivity via QSFP28 Output from the official " Ly

. datafl oW Vi ewer '“,gmw oot e NANANA
* Pipeline buffering without register/memory read/write |

11

SCALAR
ENGINES

i ngm.-cong
ARM CORTEX -A72

VERSAL
N ADAPTABLE

| DUAL-CORE | ;
ReALTME % uaroware | ’
':;: RpCry CE X R \
DRSS OO 7 i |
ceme ““ .b ': "‘;';‘_ ; “ -
P MENT ,“ KL SHEERN
A LL ‘v g AAA 2 3
— e IMABLE NETWORK ON CH
1006 \IDEO -
| MULTIRATE | pECODER
: EHERNET NI

Communication using direct I/0

 QSFP28 port + Xilinx Aurora 64B/66B kernel

* 100 Gbps achieved (loopback) Device vC1902
* Will try communication using two boards Compute Active
INT8 TOPs (peak) 145
Dimensions
Drift chamber data analysis Height Ful
* Variable-length data / loops, nested loops Length Full
 May not be suitable for hardware implementation Wit Dual Siot
* Exploring smarter ways of implementation Memory
e Currently CPU-only processing is still faster Off-chip Memory Capacity 16 G
 Machine learning / Al (using Versal?) Oft-chip Total Bandwidh 102.4 GBI
Internal SRAM Capacity 23.9 MB

ternal SRAM Total Bandwidth 23.5 TB/s

Versal VCK 5000
* FPGA + Al Core (matrix computation engine; ~ GPU) + QSFP28 x 2
* “GPU that can accept 100 Gbps direct data stream (?)”

Gen3x 16/ Gen4 x 8
Network Interfaces 2x QSFP28 (100GbE)
Logic Resources

Look-up Tables (LUTS) 899,840

VCK5000

Power and Thermal

12
Maximum Total Power 225W

Summary

Exploring the capability of Alveo in the RIBF DAQ data analysis
* Achieved x20 throughput compared to CPU for PID
* Huge speed-up (throughput) can be expected if task-parallelization is possible

* Direct external connectivity may allow streaming data to be analyzed with very
little overheads

Will continue to explore further possibilities
* External communication

 For what kind of tasks does Alveo/Versal hardware acceleration is suitable?
e \ersal Al core

13

