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Measurement statistics

To use a measurement result one must know about its reliability and precision

Most measurements are affected by many random processes and are only fully characterized by their

probability distribution

In statistical terms this is a stochastic variable

The probability distribution function can be determined from knowledge of the random processes involved

or determined experimentally by performing a large number of measurements

A stochastic variable x can assume different values with the probability

density function f(x) and x is therefore completely defined by f

y = 2x has a probability density as well and is thus also a stochastic variable, now with the probability distribution f(x/2)



Probability distribution function (PDF) -> Complete information about all

statistic properties of the random variable

Main classification discrete - continuous distributions
which distribution function - depend on the measuring process

Other names: density function

or frequency function
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The measurement result is completely characterized by its PDF

Probabilities are always positive

The probability for any value is 1



If it is not possible to identify the pdf of the result - one should characterize it as well as possible

The most important parameter is position, then width, skewness, etc.

(these parameters can be determined with good precision from a smaller amount of data)



Population mean

Choice of parameter depend on the type of measurement

Mean most common

Position measures

f’s 1:st moment
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The expectation value of x
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 = standard deviation

Width measures

Population variance

f’s 2:nd moment

Choice of parameter depend on the type of measurement

Standard deviation and Full Width Half Maximum (FWHM) most common

For a normal distribution FWHM=2.355
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Repeating independent elementary binary events (succeed – fail)

each with the probability p

E.g.

Tossing coins elementary event – coin toss

Drawing tickets with replacement elementary event – draw

Radioactive decay elementary event – decay of a nucleus

Monte Carlo simulations elementary event – one case

Parameters

N>0  number of trails

Variable

Probability distribution

Mean

Variance

p(r) 
N

r
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r
(1 p)

N r

E(r)  Np

Discrete Distributions

Binomial distribution

10  p probability

r

V (r)  Np(1 p)
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Repeated independent elementary events with many (k) outcomes

each with the probability pi where 

e.g.

Throwing dices

Monte Carlo simulations with several outcomes

Histograms

Parameters probability

k, the number of outcomes

N number of trails

Variable ri

Probability distribution

Mean

Variance

Covariance

p(r1,r2 ,, rk ) 
N!

r1!r2!  rk!
p
r1p

r2 p
rk

E(ri)  Np i

V (ri ) Np i (1 pi )
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The multinomial distribution
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The Poisson distribution

The probability for a certain number of events during a time period if the probability per time unit for

such a event is constant (l) and independent of what happened before. One can say that the process

have no memory

Radioactive decays (approx. Poisson)

Telephone switchboard load

Parameter 0< l , events/time unit

Variabel r≥0, the number of events

Probability distribution

Mean

Variance

Binomial distribution --> Poisson distribution with

p(r) 
lrel

r!
E(r)  l

V(r)  l

l  Np

E.g.

N 0p

Np=const
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Variable x,  real number

Parameter ,

Probability distribution

Mean 

Standard deviation 

N(,2) denotes a normal distributed parameter with mean  and

standard deviation 

Normal distribution

68%

95%

99.5%



Also called Gauss distribution
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The law of the large numbers

According to the law of large numbers
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The sample mean will approach the true value as the size of the sample increases:

More generally, one can say:

   gdxxfxgXg
N

N

n

n
N

 





)()(
1

lim
1

    22

1

2
)(

1
lim   






dxxfxX
N

N

n

n
N

When applied to the variance this implies:



The calculation {X} --> TN implies a data reduction

Statistics

TN =f (X1,X2,,XN) is a statistic

A statistic is a function of stochastic variables



If T  uses the information well it is
N

effective

If T
N 

is not sensitive to small variations in the distribution then T
N

is robust

Estimators

One can say that lack of consistency correspond to systematical errors

And lack of efficiency correspond to statistical errors 

Let us use the statistics T
N

to estimate the physical parameter q

T
N

is the called an estimator

If                         then T
N

is consistent

If                    for all N then T
N

unbiased

Unbiased

biased

inconsistentconsistent

lim
N
TN  q

E(TN ) q

An infinitely large sample should give the true value

The mean of a large number of small sample estimators should give the true value



If you have a sample with N measured values xi then The sample mean is

It is a consistent estimator of the population mean (the law of large numbers)

One also easily show that it is unbiased, since the mean of many small samples is the same as the mean of one large sample

and
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are both consistent estimators of 2 but only the right one is unbiased, but why N-1?

N-1 compensates for the under estimation



n̂The Poisson distribution also implies that variance can be estimated by 

n l

Estimator examples

If we know that r is binomially distributed then r/N is a consistent

estimator of  or p (according to the law of large numbers):

Nrp /ˆ 

Since small samples also have the mean lit is also unbiased

If we know that r is Poisson distributed then n is a consistent

estimator of l (according to the law of large numbers):

ln̂

and 



Find a representative value (estimator) for a physical parameter

which corresponds to X

In order to find which estimator gives the most representative value  you need

a figure of merit to minimize

E.g. you can minimize                  

giving                         

If Xi has different variances         you can instead use                                

Minimizing  -->                        
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The Likelihood function

L(X|q)=P(X|q) is called the likelihood function

which expresses the probability to get the result X if the parameter is q

L(X1X2X3|q) = L(X1|q)L(X2|q)L(X3|q) if X1, X2 and X3 are independent

In the maximum likelihood (ML) method you choose the q that gives maximum L

or, which is the same, maximum lnL.

If the X are normally distributed ML is identical to LSM (the least square method)



Information

The precision in the ML-determination is better with a more narrow maximum .

Narrow maximum (small variance) --> more information about q

More observations (smaller variance) --> narrower maximum

approximate information about position

better information information about position

You can define information (according to Fischer) as

evaluated where L is maximal

The information is then additive

I(X1X2X3)=I(X1)+I(X2)+I(X3)

if X1,X2 and X3 are independent
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Covariances and correlations

or for continuous variables:

The magnitude of the normalized correlation coefficient is defined as:

xi

xj

xi

xj

xi

xj
0 1Close to 1-1

xi

xj
corr(xi,xj)

Non-diagonal Diagonal Non-diagonal Non-diagonalV

If we have two random variables then as x varies around x, y will vary around y

The covariance will tell us if these variations are connected:

is always less or equal to 1:
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cov(x,y) = cov(y,x)  V is symmetric



xi

xj

0

xi

xj

0corr(xi,xj):

Whether the pattern is “circular” or “elliptic” along the coordinate axes, does not affect the correlation

Since the “ellipticity” can be removed by re-scaling

Independent Uncorrelated

But it is important to realize that:

corr(x,y) = -1 for sample 1 corr(x,y) = +1 for sample 2

Here corr (x,y)= 0 for the combined sample 1 + 2 but x and y are definitely not independent

thus:



Addition of two stochastic variables
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If you subtract two random variables you get the same formula. X can be signal and y background

If the signal plus background is 25 and the background 16 the error in N-B=9 is about 6

One can easily show that:                                                              

and more general after linearizing:                                                                                          

This is called the error propagation formula
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If you combine two measurements negatively covariance helps



Negative correlation
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Estimating the DC bias of an AC signal by random sampling require many samples to 

get a precise result using averaging.

If you realize that voltages are pairwise negatively correlated if the time interval is 

close to half the period.

If the interval is exactly half the period the correlation is exactly -1. The variance is 

then:

Since:

The average of two sample points with half a periods distance is exactly base line.
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where the covariance matrix                            is diagonal

Marginal

distributions 

Multidimensional probability distributions

The multivariate distribution

This expression can be given in matrix form

If x1 and x2 are independent and normally distributed, the compound 2-d distribution is given by:
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Normality in several dimensions

When measuring independent normal distributed parameters in connection

with events 67% are within one standard deviation from the mean and 95%

Within 2 standard deviations.

The probability of 10 independent parameters each being within one standard

deviation from the mean in is 0.6710 = 1.8%. The corresponding probability for

being within two standard deviations is 0.9510 = 60%. 

Thus when considering several parameters in connection with an

event it is probable that some parameters are far from the mean.



If V is not diagonal then x1 and x2 are correlated

Multivariate distributions
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Marginal

distributions 

The marginal distributions do not tell the whole story
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Tests of hypotheses

H0 null-hypothesis- the hypothesis you want to test - e.g. there is a pulse

H1 an alternative hypothesis – there was no pulse

Error of the first kind (E1):   Erroneous rejection of the null-hypothesis – the pulse was lost, inefficiency

Error of the second kind (E2):  Erroneous rejection of the alternate hypothesis – noise

Choose a limit so that P(E2) becomes sufficiently small – below a significance level 5% is common. 

In particle physics you demand 5 for a discovery of a new particle (this corresponds to P(E1) = 0.00003%).

If P(E2) becomes too large improve the data (improve the measurements)

Find a cost function which includes the probabilities and the cost caused by errors

Choose the hypothesis that minimizes the cost function

P(E2)P(E1)

P(X|H1) P(X|H0) – does the data look like a pulse

Accept H0Reject H0



Why we need to record many events

To determine if our N new observed events constitute a discovery 
we must determine if the same data could be produced by 

combinations of well-known events. The probability for is the 
background B. 

For N to be a discovery N must be significantly larger than B

For example if N is 80 and B is 64 then (B) is 8 (assume Poisson 
distribution 2=N)

N is 2 above i.e. 2% probability that N is just random noise

If we measure twice as long N will be 320, B is 256 and (B) is 
16 i.e. about 4 above (0.004% that it is random noise). Much 

smaller probability that N is due to random noise but not enough.

5 (0.00002% it is random noise) is required for discovery.

68.3

95.5

99.7

 

Normal distribution
Almost the same
as Poisson if N>50



Stochastic processes

A stochastic process is a family (ensemble) of functions

depends on time t and the outcome of the experiment z(family member)

for each t, x(t,z) is a stochastic variable and

for each z, x(t,z) is an ordinary time function

It is thus a time dependent stochastic variable whose values are described

by a multi-ordered probability distribution function:

ensemble
Random

variable
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Random walk

Weiner process

Telegraph process

Poisson process

.

Noise can be expressed as a wiener process

Examples of stochastic processes



Correlation in stochastic processes

In stochastic processes it is possible to calculate the correlation between the stochastic process at different times. 

This is called autocorrelation.

If the autocorrelation is localized measurement separated with an interval larger than the width of the 

autocorrelation function, these values are uncorrelated. If the autocorrelation function is a delta infinitely close data 

are uncorrelated (clearly unphysical). This is the case of white noise (also unphysical).

If you sample a stochastic process so that the samples are uncorrelated but normal every third sample is more than 

one standard deviation away from the mean. 5is a good criterion if you look at one measurement. 

If you have many measurements this reasoning is not valid anymore.

If you have a digital transmission you need a Bit Error Rate (BER), i.e. the probability that noise would corrupt 

one bit, of the order of or better that 10-16. With 5 for each sample you would find 2 pulses/second if you sample 

with 40 MHz.

This argument can be applied to the situation where you look for a pulse in noise or a peak in a noisy spectrum.

This is sometimes called the “Look elsewhere effect”

If a peak could happen in any of n bins you need to improve the 5 margin with the factor n.



Example of interpretation of uncertain 

experimental results

The 750 GeV diphoton excess reported by ATLAS and CMS in 2015 disappeared in 2016 data, in the 

meantime about 500 theoretical studies were made to explain the early results. It never reached the 5

level but showed promise. There was also a hope to find something new after the Higgs (see 

Wikipedia for more information).

From https://physicsworld.com > and-so-to-bed-for-the-750-gev-bump



Literature

My favorite statistic book:

Statistical methods in experimental physics

By Frederic James

This book contains everything that is necessary to know in experimental statistic,

But it is rather extensive and takes time to read if you want read it thoroughly.

If you don’t intend to spend much time on the project there are many other good books on statistics.


