EM calorimeter for detecting high-energy photons

Research Center for Electron Photon Science (ELPH), Tohoku University, Japan

<u>ishikawa@lns.tohoku.ac.jp</u>

IEEE NPSS International School for Real Time Systems in Particle Physics 2019

Unit of the energy

electron volt (eV)

 amount of kinetic energy gained by an electron accelerating from rest through an electric potential difference of 1 V in vacuum

eV ~ energy of a visible photon

keV=1000 eV

MeV=1000 keV ~ minimum energy loss in a certain thickness g/cm²

GeV=1000 MeV ~ energy corresponding to the rest mass of a proton (neutron)

What is different

	EM calorimeter	γ -ray measurement
energy of interest	10 MeV ~ GeV ~	~ MeV
photon interaction	pair production	photoelectric effect
energy deposit	shower	point-like
detector size	large	small

Outline ~ 1st lesson

introduction ~ hadron physics getting started ~ calorimetry & EM shower physics processes in EM showers **EM** shower profile light source light detection energy response of a calorimeter **FOREST detector** summary

Introduction

hadron physics

dibaryon (B=2 hadron object)

Hadron physics

hadron

experiences a strong interaction governed by quantum chromodynamics (QCD)

QCD color-singlet quark and gluon many-body system

qqq baryons and $\overline{q}q$ mesons are ordinary hadron, and others are exotic hadrons

hadron physics

structure and interaction of hadrons in free space and nuclear medium non-perturbative domain of QCD

Dibaryon

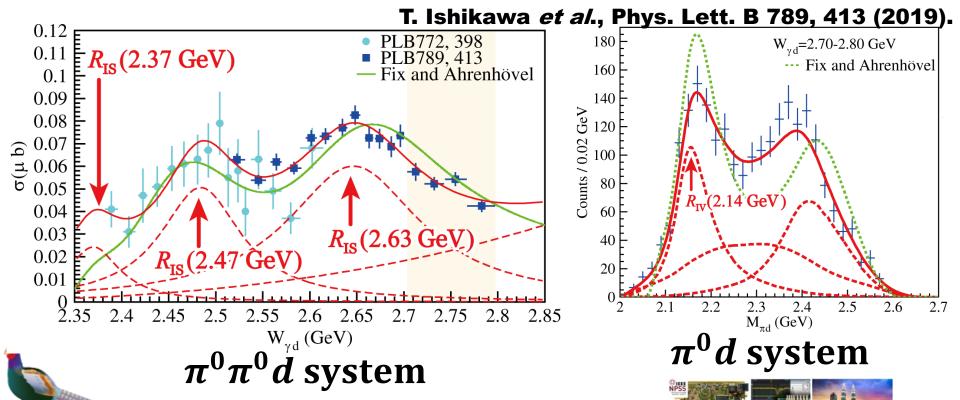
dibaryon

T. Ishikawa

an object with baryon number B=2 the quark picture of dibaryons are of interest

a phase change of its basic configuration

from a molecule-like state consisting of two baryons such as the deuteron



Dibaryon

T. Ishikawa

our measurement of cross sections for the $\gamma d \to \pi^0 \pi^0 d$ reaction, suggesting the $\gamma d \to R_{IS} \to \pi^0 R_{IV} \to \pi^0 \pi^0 d$ sequential process is dominant

Dibaryon

neutral mesons decay into several photons π^0

$$\pi^0 o \gamma \gamma$$

Four-momentum of a meson is given by a sum of that for the daughter photons

$$\begin{split} P_{\pi} &= P_1 + P_2 \\ &= (E_1, p_{x,1}, p_{y,1}, p_{z,1}) + (E_2, p_{x,2}, p_{y,2}, p_{z,2}) \\ E_i^2 &= p_{x,i}^2 c^2 + p_{y,i}^2 c^2 + p_{z,i}^2 c^2 \text{ a photon is massless} \\ M_{\pi} c^2 &= \sqrt{2E_1 E_2 (1 - \cos \theta)} \end{split}$$

high-energy photon detection is important!

Getting started

calorimetry

electromagnetic shower

Calorimetry

in thermodynamics measuring the heat transfer

in nuclear physics

measuring the energy of a particle through total absorption in a block of matter (the energy of the particle is eventually converted into heat) the calorimeter must have a destructive feature

shower

a cascade of secondary particles produced as the result of a high-energy particle interaction with dense matter

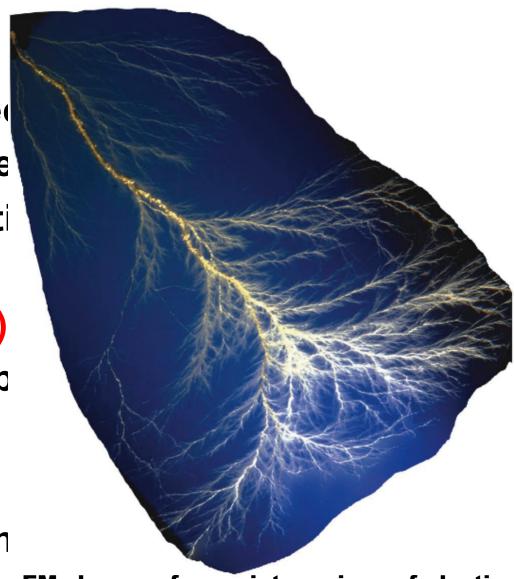
electromagnetic (EM) shower

produced by a photon, electron, or positron

hadronic shower produced by a hadron

shower

a cascade of second produced as the particle interaction


electromagnetic (EM)

produced by a p

positron

hadronic shower

produced by a h

R. Wigmans, beam tree created by EM showers frozen into a piece of plastic

T. Ishikawa

EM shower

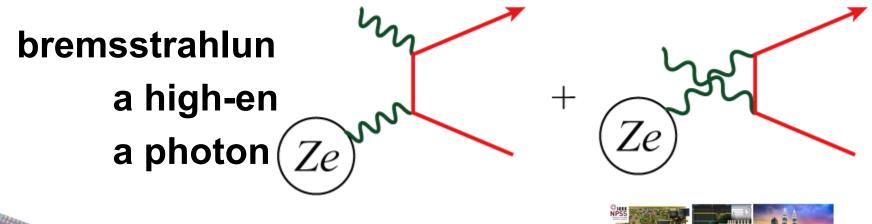
cascade of the following two processes

pair production

a high-energy photon is converted into an electron and positron pair

bremsstrahlung

a high-energy electron (positron) emits a photon



EM shower cascade of the following two processes

pair production

T. Ishikawa

a high-energy photon is converted into an electron and positron pair

EM shower cascade of the following two processes

pair production

a high-energy photo an electron and posi-

bremsstrahlung

a high-energy electron (positron) emits a photon

Physics processes in EM showers

energy loss of a charged particle

critical energy

Photon interaction

Energy loss of a charged particle

EM interaction

- ionizing the medium
 - energy transfer is sufficient to release a bound electron principle on which many detectors are based
- exciting atoms or molecules
 de-excitation from these metastable states may yield
 scintillation light
- emitting Cherenkov light
- producing energetic knock-on electrons (δ ray)
- producing bremsstrahlung
- nuclear reaction

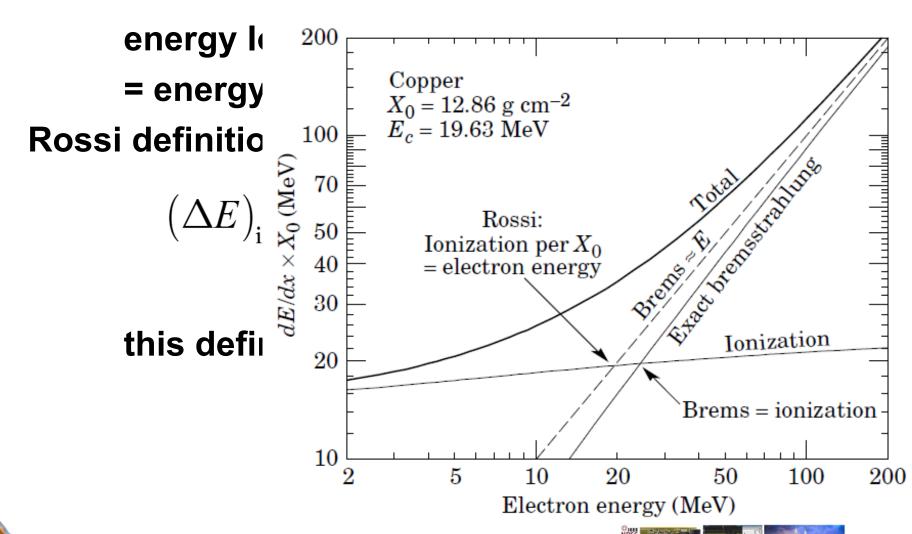
Critical energy

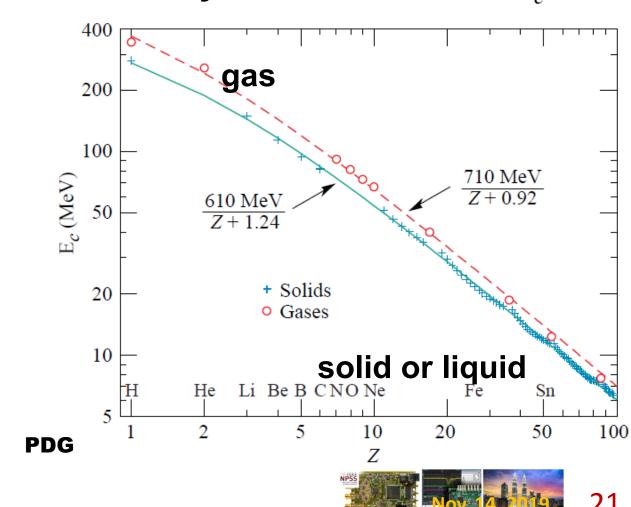
traditional definition
energy loss of the radiation process
= energy loss of the ionization

Rossi definition using the radiation length X_0

$$(\Delta E)_{\text{ion}} = \left(\frac{dE}{dx}\right)_{\text{ion}} X_0 = E$$

this definition is equivalent when

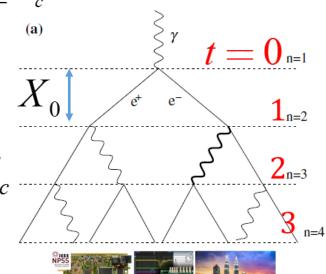

$$\left(\frac{dE}{dx}\right)_{\text{brems}} = \frac{E}{X_0} \quad \text{(high energy limit)}$$


Critical energy

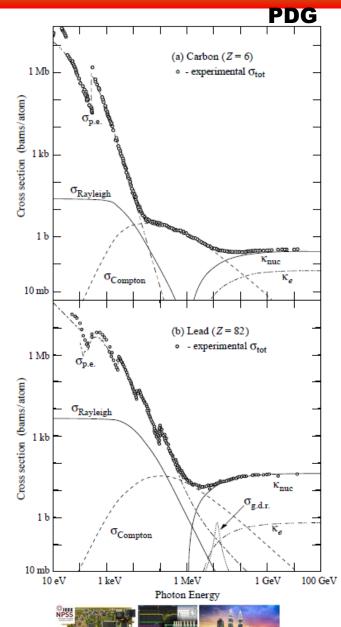
traditional definition

Critical energy

Rossi definition E_c radiation is more likely to occur for $E>E_c$



Exercise 1

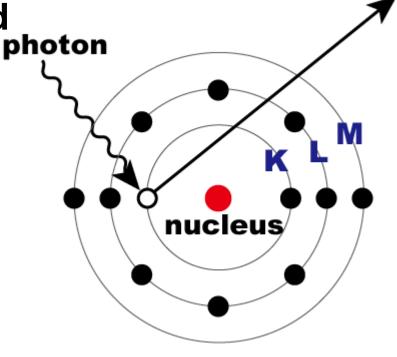

Obtain the shower maximum (depth giving the maximum energy deposit) in the following simple shower model.

bremsstrahlung / pair production at each step (=depth) energy sharing is symmetric after each process no energy loss by ionization (excitation) for $E > E_c$ full energy loss by ionization for $E \le E_c$

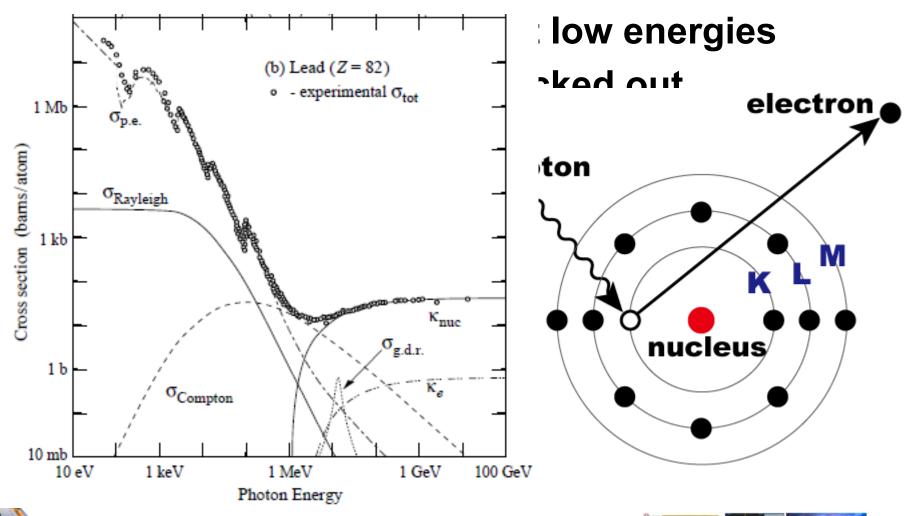
- 1. number of particles after depth t
- 2. energy per particle after depth t
- 3. number of shower particles with $E_{\scriptscriptstyle c}$
- 4. shower maximum in $\it t$

photoelectric effect
Rayleigh scattering
Compton scattering
pair production
photonuclear reaction

photoelectric effect


most likely to occur at low energies a bound electron is kicked out

photon is absorbed complicated


$$\sigma \sim Z^n, n=4\sim 5$$

$$\sigma \sim E_{\gamma}^{-3}$$

Rayleigh scattering
Compton scattering
pair production
Photonuclear reaction

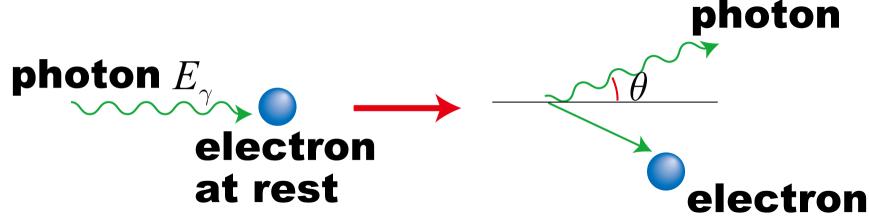
photoelectric effect

photoelectric effect

Rayleigh scattering [coherent]

important at low energies
photon is deflected by atomic electrons
without losing its energy
only affects the spatial distribution of
the energy deposit

Compton scattering [incoherent] pair production photonuclear reaction



photoelectric effect

Rayleigh scattering [coherent]

Compton scattering [incoherent]

a bound electron is kicked out photon is not absorbed

pair production photonuclear reaction

photoelectric effect Rayleigh scattering [coherent]

Compton scattering [incoherent]

a bound electron is kicked out photon is not absorbed

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \frac{1 + \cos^2 \theta}{\{1 + \gamma(1 - \cos \theta)\}^2} \left\{ 1 + \frac{\gamma^2 (1 - \cos \theta)^2}{(1 + \cos^2 \theta) \{1 + \gamma(1 - \cos \theta)\}} \right\}$$

$$\gamma = E_{\gamma} / m_e c^2$$

energy transfer $T = E_{\gamma} \frac{\gamma(1-\cos\theta)}{1+\gamma(1-\cos\theta)}$

pair production photonuclear reaction

photoelectric effect Rayleigh scattering [coherent]

Compton scattering [incoherent]

many MeV photon are absorbed finally in a sequence of Compton scattering angular distribution disappears quickly in this sequence

$$\sigma \sim Z, \, \sigma \sim E_{\gamma}^{-1}$$

more likely to occur than photoelectric effect at energies $E_{\gamma} > 20 \text{ keV for } Z = 6$

pair production photonuclear reaction

$$E_{\gamma} > 700 \text{ keV for } Z = 92$$

photoelectric effect

Rayleigh scattering

Compton scattering

pair production

threshold $2m_e c^2$

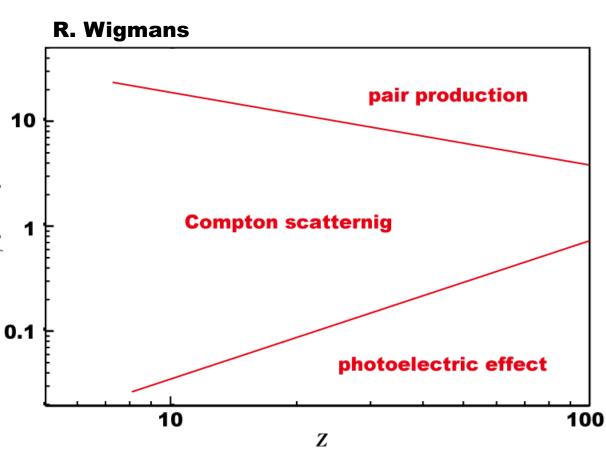
increasing with energy

reaching an asymptotic value at high energies 7 A

 $\sigma \sim \frac{7}{9} \frac{A}{N_A \rho X_0}$

related to the radiation length X_0

photonuclear reaction


photoelectric effect Rayleigh scattering Compton scattering pair production

photonuclear reaction

at energies 5~20 MeV giant dipole resonance (GDR) less than 1% of the total

Photoelectric effect
Rayleigh scattering
Compton scattering
pair production
photonuclear reaction

Energy domain in which each process is most likely to occur

Exercise 2

What is the main process in the total energy deposit (more than 2/3)?

Outline ~ 2nd lesson

introduction ~ hadron physics getting started ~ calorimetry & EM shower physics processes in EM showers **EM** shower profile light source light detection energy response of a calorimeter **FOREST detector** summary

EM shower profile

scaling variables radiation length Molière radius shower development longitudinal transverse

Radiation length

mean distance X_0 over which a high-energy electron or positron loses all but e^{-1} of its energy

high-energy electrons lose the same fraction of their energy in the same number in \boldsymbol{X}_0 material-dependent effects are eliminated

$$\sigma(E \to \infty) = \frac{7}{9} \frac{A}{N_A \rho X_0}$$
 for photon interactions (pair production)

Radiation length

usually ρX_0 is expressed simply by X_0 namely ${\rm g\cdot cm}^{-2}$ is used as a unit for X_0 calculation by Tsai

$$\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 \left(L_{\text{rad}} - f(Z) \right) + Z L_{\text{rad}}' \right\}$$

$$4\alpha r_e^2 \frac{N_A}{A} = (716.408 \text{ g·cm}^{-2})^{-1} \text{ for } A=1 \text{ g·mol}^{-1}$$

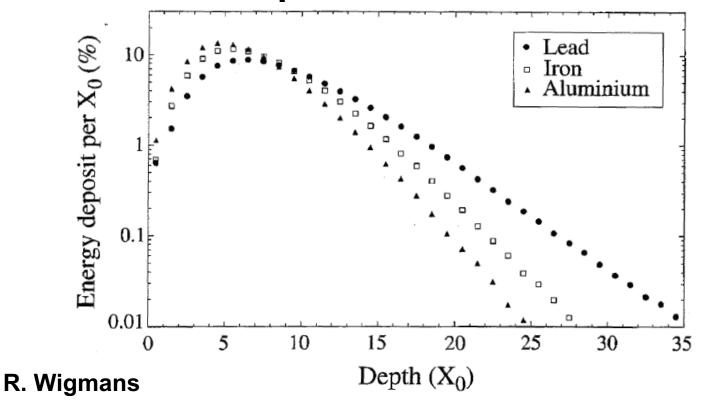
$$f(Z) = a^2 \left\{ \left(1 + a^2 \right)^{-1} + 0.20206 - 0.0369a^2 + 0.0083a^4 - 0.002a^6 \right\}$$

mixture or compound

$$\frac{1}{X_0} = \sum \frac{w_j}{X_j}$$
 fraction by weight

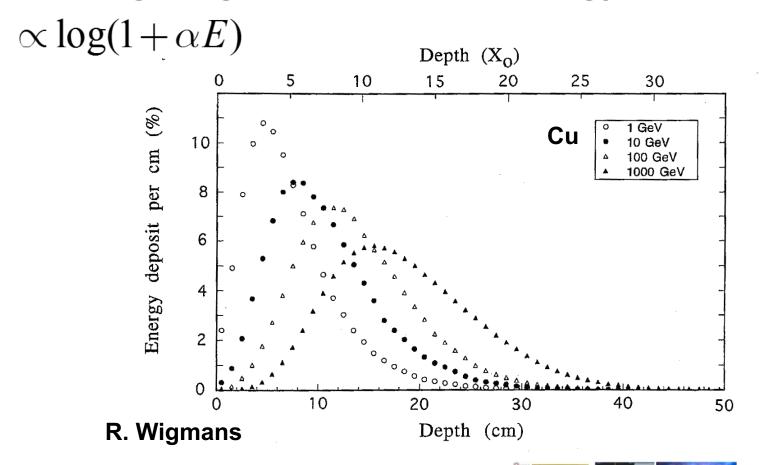
 X_0 is measured in $g \cdot cm^{-2}$

	Element	Z	L_{rad}	$L'_{ m rad}$
	Н	1	5.31	6.144
ht	He	2	4.79	5.621
	Li	3	4.74	5.805
	${\rm Be}$	4	4.71	5.924
	Others	> 4	$\ln(184.15Z^{-1/3})$	$\ln(1194Z^{-2/3})$

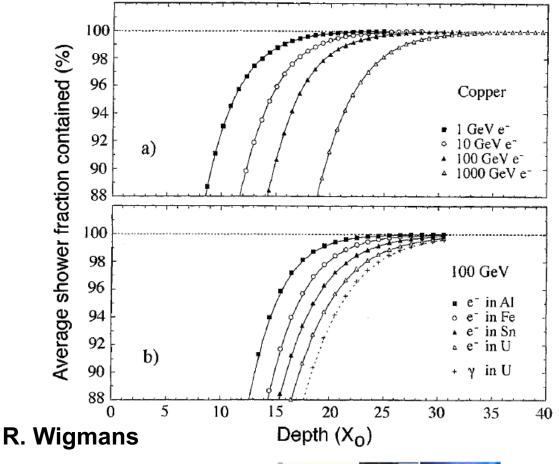

Radiation length

typical X_0 values

material	Z	A	X_0 [g/cm ²]	$ ho$ [g/cm 3]	<i>X</i> ₀ [cm]
H2 (liq)	1	1.008	63.05	0.071	888
D2 (liq)	1	2.014	126.0	0.169	746
С	6	12.01	42.70	~ 1.53	~27.9
Al	13	26.98	24.01	2.70	8.90
Cu	29	63.55	12.86	8.96	1.44
W	74	183.8	6.76	19.3	0.35
air			36.62	1.205×10 ⁻³	3.04×10^4
polyvinyl toluene			43.90	1.03	42.6


Longitudinal development

energy deposit as a function of depth expressed by the radiation length almost material-independent


Longitudinal development

shower maximum depth giving the maximum energy deposit

Longitudinal development

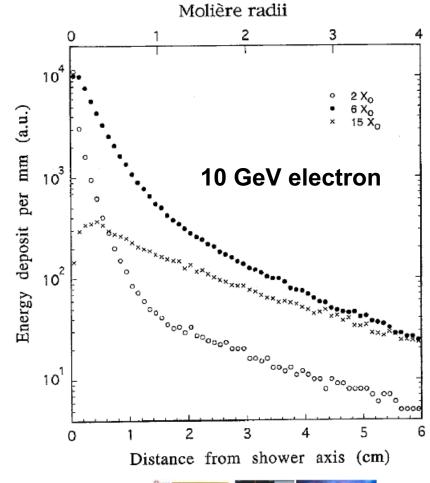
average energy fraction contained in a block of matter with infinite transverse dimensions

Molière radius

transverse development of EM showers

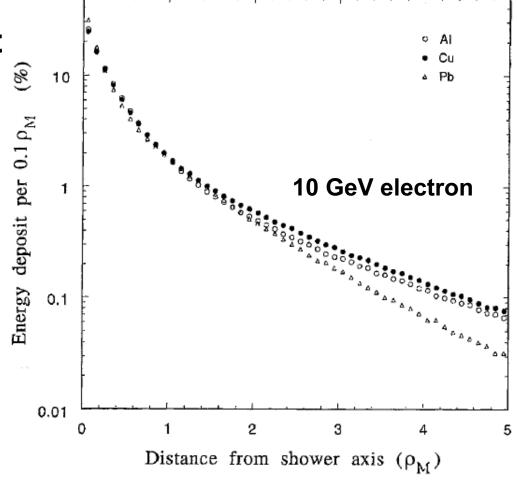
$$\rho_{M} = E_{s} \frac{X_{0}}{E_{c}}$$

$$E_{s} = m_{e} c^{2} \sqrt{\frac{4\pi}{\alpha}} = 21.2 \text{ MeV}$$


80% of the shower energy is deposited in a cylinder with a radius of ρ_M against the momentum direction of the primary high-energy particle

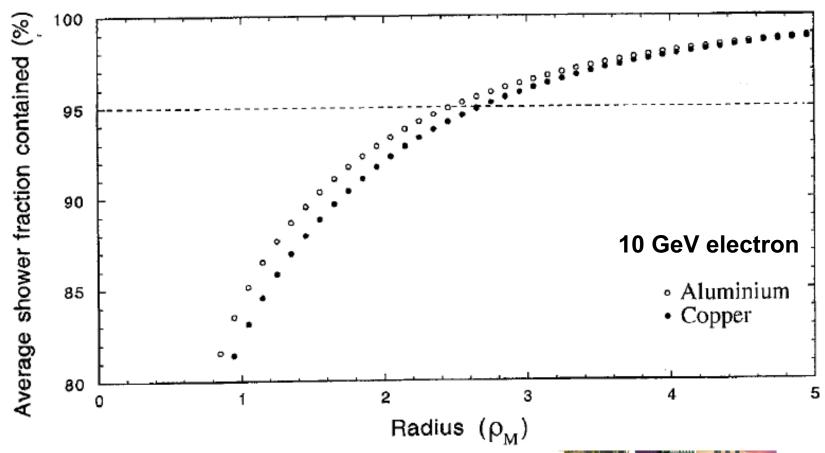
Transverse development

radial distribution of energy deposits for some depths



Transverse development

radial distribution of energy deposits for some


materials

material-independent

Transverse development

average energy fraction contained in an infinitely long cylinder

Exercise 3

Consider the minimum length of the calorimeter module for 1, 10 GeV, 100 GeV photons? Here, 99% of the total energy deposit is assumed to be measured, and the module has a infinite transverse dimension.

Light source

Cherenkov light

scintillation light

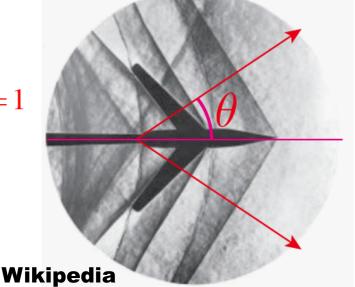
Cherenkov light

emitted when a charged particle travels through the medium faster than the speed of light

threshold

$$\beta = \frac{v}{c} > \frac{1}{n}$$
 angle

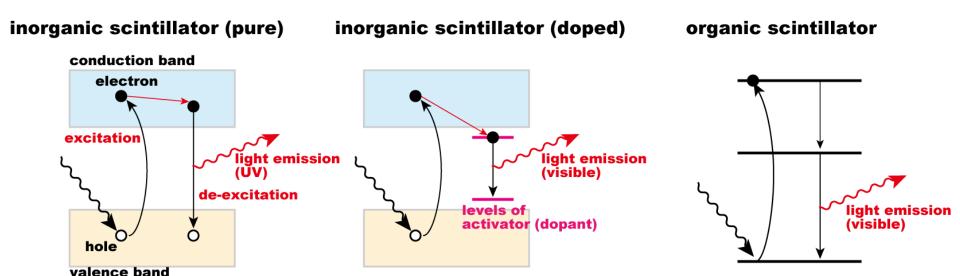
$$\cos \theta = \frac{1}{\beta n} n$$
: refractive index


number βn

 $\sim 370 \sin^2 \theta \text{ eV}^{-1} \text{cm}^{-1} \text{ for } z = 1$

low #photons, mainly UV

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2} \right)$$


prompt emission, polarized

shock wave phenomenon

Scintillation light

different light emission mechanisms

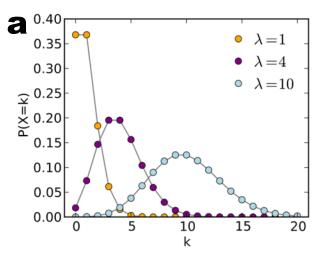
inorganic scintillator is often used for calorimeters short radiation length long decay time

Scintillation light

NaI(TI): 45000 photons /MeV

scintillator	$ ho$ [g/cm 3]	n	λ _{em} [nm]	τ [ns]	relative yield
NaI(TI)	3.67	1.85	410	250	100
CsI(pure)	4.51	1.95	310	10	6
CsI(TI)	4.51	1.79	565	1000	45
BGO Be ₃ Ge ₄ O ₁₂	7.13	2.15	480	300	10
BSO Be ₃ Si ₄ O ₁₂	6.80	2.06	480	100	2
PWO PbWO ₄	8.28	2.16	480	< 30	8.0
EJ-212	1.023	1.58	423	2.4	22

lastic scintillator green-light emission materials are often used decay time: organic scintillator is shorter time resolution: number of photons at the leading edge


T. Ishikawa

Exercise 4

What is the width of the photoelectric peak in response to the ¹³⁷Cs radioactive source for NaI(TI), BGO, and PWO? Here, all the emitted scintillation light is assumed to be converted into a electric signal.

¹³⁷Cs: 0.662 MeV

counting number N having a fluctuation (standard deviation) of \sqrt{N} (Poisson distribution)

Light detection

photo-sensitive material

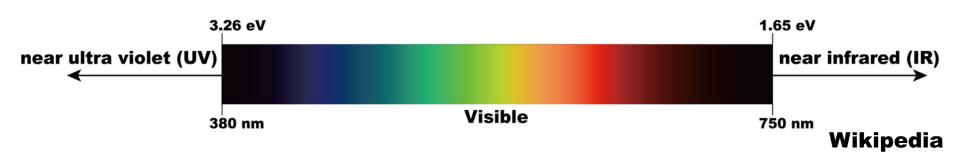
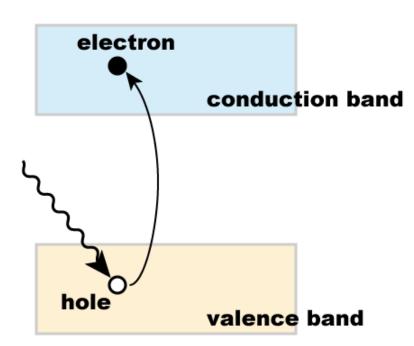

photo-multiplier tube

Photo-diode

photo-detectors sensitive to visible or near visible light

photon energy:

$$E_{\gamma} = h\nu = \frac{hc}{\lambda} \simeq \frac{1239 \text{ eV} \cdot \text{nm}}{\lambda}$$


energy transfer of a photon to a free electron: forbidden

low sensitivity of metals to photons

photoconductive effect

electrons in the material are lifted to the conduction band from the valence band

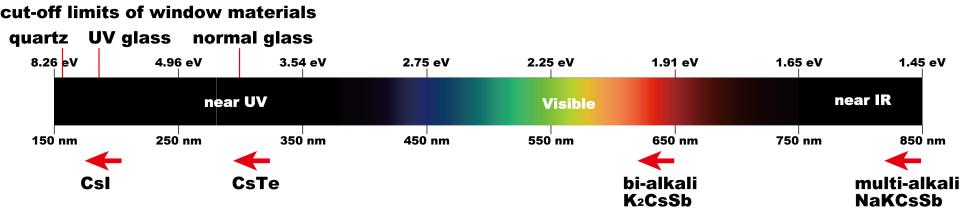
- electrons and holes
- produce a photo-current
- → photodiode

photoelectric effect

energized electrons diffuse through the material 0.05 eV loss for each electron-phonon scattering

(mean free path: a few nm)

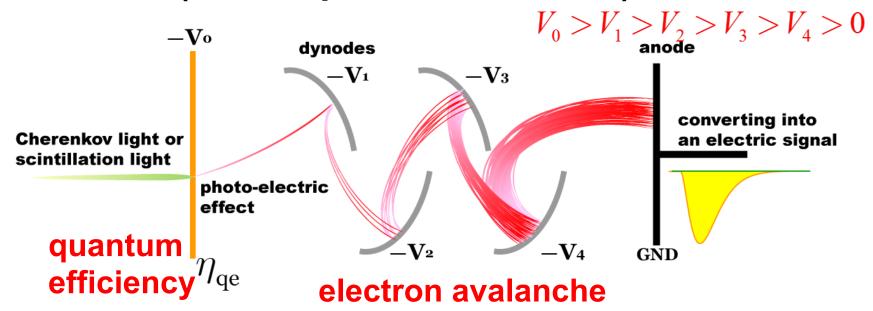
electron arriving at the surface with a sufficient excess energy can escape from the material


$$E_{\gamma} > E_{\rm g} + E_{\rm ea}$$

electron vacuum level hole va

the work function: fermi level and vacuum level

almost all the photo-sensitive materials are reactive (made up of alkali metals) operation must be in vacuum window materials are required transparent to the light of interest


less than 1100 nm for Si

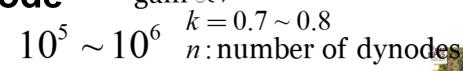


Photo-multiplier tube

almost all the photo-sensitive materials are reactive (made up of alkali metals)

electrons are accelerated in each step several secondary electrons are emitted at each dynode $gain \propto V^{kn}$

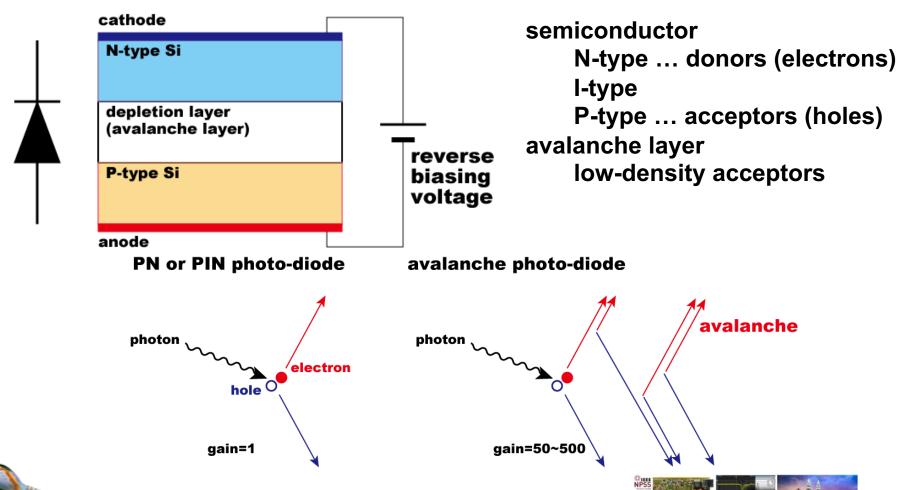


Photo-diode

T. Ishikawa

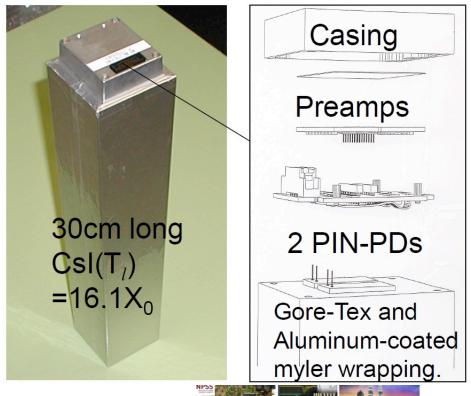

electron-hole pair is produced by a photon electrons moves to the anode

Photo-diode

Iower gain as compared with PMT additional amplifier is needed operation is also available in high magnetic fields

K. Miyabayashi Belle at KEK used in a solenoidal magnetic field

Energy response of a calorimeter

types homogeneous sampling performance energy resolution non-linearity

Homogeneous calorimeters

Entire kinetic energy of shower particles gives a signal inorganic scintillator is the best

energy response is intrinsically linear

large number of photoelectrons

non-linearity

saturation effects in PMTs
saturation effects in scintillator
shower leakage
light attenuation
non uniformity of scintillator
non uniformity of PMT

Sampling calorimeters

```
inactive part [lead]
     develop the EM shower
active part [plastic scintillator]
     convert the kinetic energies of shower
     particles into a photon
                                energy resolution is not so high
sampling fraction
     small number of photoelectrons
energy response is different between
     electron, positron, photon, [linear] and
     the others [non-linear]
```


Energy resolution

empirical formula

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{c_2}{E/\text{GeV}}\right)^2 + \left(\frac{c_1}{\sqrt{E/\text{GeV}}}\right)^2 + c_0^2$$

1st term (σ_E : independent of the energy) [noise] electric noise

2nd term (σ_E : proportional to \sqrt{E}) [statistics] photo-electron statistics photon yield & conversion

 3^{rd} term (σ_E : proportional to E) [constant]

Energy resolution

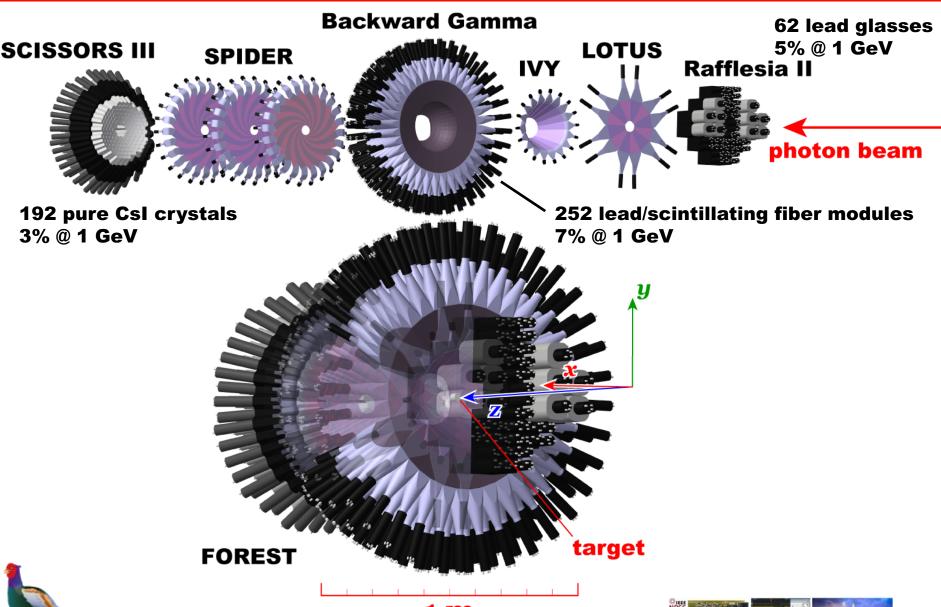
constant term albedo shower leakage from the back, side, front calibration errors for modules non-uniformities non-uniformity in scintillator (emission, and light collection) non-uniformity in PMTs

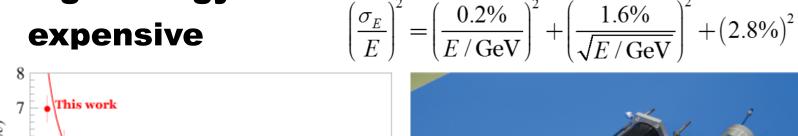
Exercise 5

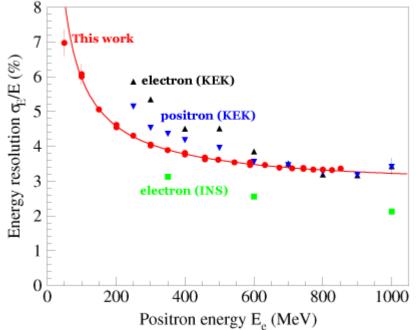
Consider the best geometry of a calorimeter for the photon beam energy measurement? Here, all the photons are assumed to come on the z axis.

FOREST detector

EM calorimeters forward calorimeter central calorimeter backward calorimeter


plastic scintillator hodoscopes

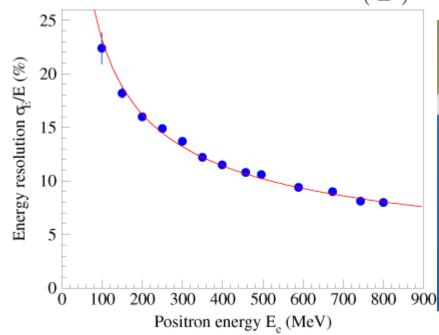

FOREST detector


T. Ishikawa

Forward calorimeter

inorganic scintillator
high Z and high density
active material only
high energy resolution

Central calorimeter

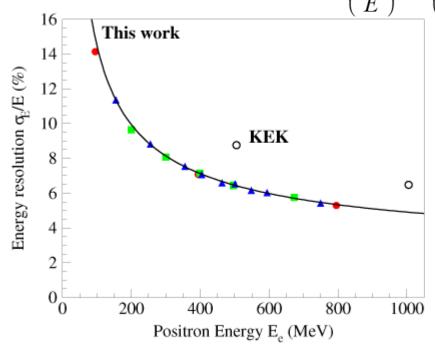

sampling calorimeter

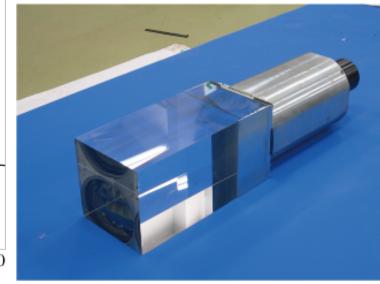
heavy material (lead) & active scintillator (scintillating fiber)

poor energy resolution

cheaper

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{0.5\%}{E/\text{GeV}}\right)^2 + \left(\frac{7.2\%}{\sqrt{E/\text{GeV}}}\right)^2 + \left(0.0\%\right)^2$$

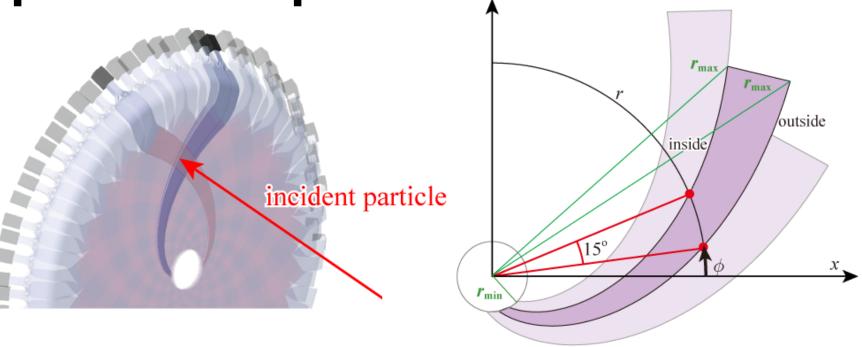



Backward calorimeter

Cherenkov calorimeter heavy transparent material poor energy resolution

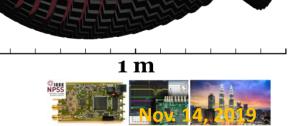
cheaper

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{0.5\%}{E/\text{GeV}}\right)^2 + \left(\frac{4.1\%}{\sqrt{E/\text{GeV}}}\right)^2 + \left(2.7\%\right)^2$$

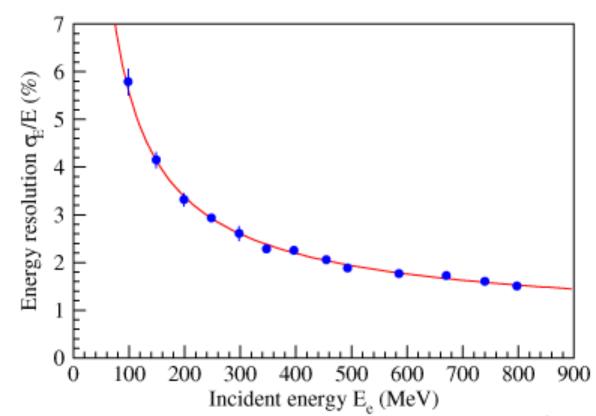


Plastic scintillator hodoscopes

placed in front of each calorimeter to identify charged particles forward hodoscope can determine the


position of impact

FOREST detector


EM calorimeters in FOREST
energy resolution is not so high, yet
solid angle is large (88% in total)
giving an opportunity for hadron

physics studies new calorimeter BG0egg at SPring-8

FOREST detector

new calorimeter BGOegg at SPring-8

1320 BGO crystals 1.38% @ 1 GeV

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{0.42\%}{E/\text{GeV}}\right)^2 + \left(\frac{1.15\%}{\sqrt{E/\text{GeV}}}\right)^2 + \left(0.63\%\right)^2$$

Exercise 6

What is the mean number of photoelectrons for 1 MeV energy deposit for BGOegg calorimeter?

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{0.42\%}{E/\text{GeV}}\right)^2 + \left(\frac{1.15\%}{\sqrt{E/\text{GeV}}}\right)^2 + \left(0.63\%\right)^2$$

Suppose quantum efficiency is 20%, what is the light collection efficiency in a BGO crystal?

NaI(TI): 45000 photons /MeV relative photon yield of BGO with respect to Na(TI): 10%

Summary

omitted items clustering

energy reconstruction position reconstruction

energy calibration

most important

 π^0 peak in the $\gamma\gamma$ invariant mass is used in the FOREST experiments

Summary

references

M. Tanabashi *et al.* (Particle Data Group), Review of Particle Physics, Phys. Rev. D 98, 030001 (2018). [PDG]

G. Gratta, H. Newman, and R.Y. Zhu, Crystal Calorimeters in Particle Physics, Ann. Rev. Nucl. Part. Sci. 14, 453 (1994).

R. Wigmans, Calorimetry Energy Measurements in Particle Physics, Oxford Univ. Press (2000). Calorimetry

Summary

our papers describing EM calorimeters

T. Ishikawa *et al.*, Testing a prototype BGO calorimeter with 100-800 MeV positron beams, Nucl. Instrum. Meth. A 837, 109 (2016).

T. Ishikawa *et al.*, The FOREST detector for meson photoproduction experiments at ELPH, Nucl. Instrum. Meth. A 832, 108 (2016).

T. Ishikawa *et al.*, A detailed test of a BSO calorimeter with 100-800 MeV positrons, Nucl. Instrum. Meth. A 694, 348 (2012).

