A Low-power VCSEL Driving Structure Implemented in a 4 x 14-Gbps VCSEL Array Driver

Di Guo,^{a,*} Quan Sun,^b Cong Zhao,^a Datao Gong,^c Chonghan Liu,^c Tiankuan Liu,^c Le Xiao,^a Dongxu Yang,^d Jingbo Ye,^c

^a Department of Physics, Central China Normal University, Wuhan, Hubei 430079, P.R. China
^b Fermi National Accelerator Laboratory, Batavia, Illinois, USA
^c Department of Physics, Southern Methodist University, Dallas, TX 75275, USA
^d UT Southwestern Medical CenterDepartment of Radiation Oncology, Dallas, TX, USA
* <u>diguo@mail.ccnu.edu.cn</u>

Introduction

- A 4-channel, 4 x 14-Gbps VCSEL array driver ASIC, has been designed and fabricated in a commercial 65nm CMOS technology for the potential applications such as detector front-end readout in particle physics and related fields.
- Two different designs are integrated in the chip, and the proposed design is located in the first two channels. It features a novel low-power output structure, and achieves a 44 mW/ch power consumption when delivering a 2 mA ~7 mA output current to the VCSEL at a data rate of 14 Gbps.

4 x 14- Gbps/ch VCSEL Array Driver

 The die measures 2000 µm x 1230 µm. The die was wire bonded to the VCSEL array, and integrated within the array optical module. The proposed design has been fully tested.

- Each channel of the ASIC consists of a limiting Amplifier (LA) and an output driver. All four channels share the same LA design as shown above.
- Limiting amplifier (LA) is composed of three differential stages. Stage1 uses CTLE as the adjustable equalization, and a passive inductance is included to optimize the peaking frequency. Stage2 and Stage3 both employ shared inductance structure.

Output Driver Design

- The proposed output driver schematic is shown above. On-chip AC coupling is used between LA and output driver to lift the common voltage close to the VCSEL threshold voltage.
- The output current $I_{out} = I_{ds5} + I_{ds4} I_{ds2.}$ Ids4 is mirrored from Ids1 by M3, so I_{ds4} and I_{ds2} are complementarily provided. Thus, the output amplitude consists both from the modulated right brunch(I_{ds2}) and the left brunch(I_{ds1}), making it a more efficient structure from the structure level compared to the conventional design.
- A feed-forward capacitor (Cf) together with R4, a CTLE(C3 and R5) structure are both used to improve the bandwidth.

- The VCSEL driving ASIC is integrated in an array optical module and tested optically.
- VCSEL Array used in the test: II-VI 14G series APA4401040201 II-VI

Conclusion

- A novel output stage structure of a VCSEL driver is proposed, designed and implemented in a 4 x 14Gbps/ch VCSEL array driver.
- The test results show wide-open 10Gbps and 14 Gbps optical eyes, and the design achieves a power consumption of 44 mW/ch at 14 Gbps

Optical eye diagram testing set up

10Gbps optical eye

- Wide-open 10-Gbps/ch and 14-Gbps/ch optical eye diagrams of the proposed VCSEL driver design were captured and shown in the left.
- The tested power consumption is 44mW/ch for the proposed driving structure at a data rate of 14 Gbps.

data rate.

Acknowledgments

- This work is supported by US-ATLAS R&D program, US Department of Energy Grant DE-FG02-04ER1299 and SUM Dedman College Dean's Research Council Grant.
- The authors would also like to thank Jun Liu and Cong Zhao for the help in the chip testing.

22nd Virtual IEE Real Time Conference October 12 – 23, 2020

