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M.LIUData processing in Particle Physics

Offline

processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.
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Figure 1: Latency landscape

In this paper, we do not focus on the L1 triggering requirements and instead consider the gains
from hetergeneous compute resources to improve both our HLT and o�ine processing power.

When considering how best to use new optimized computing resources for physics, we must first
consider the event processing model employed by large physics experiments. An example of the current
compute model is shown in Fig. 2 where event data is processed, often sequentially, across multiple
CPU threads. It is important to note that the basic unit of processing is a single event and performing
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the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time
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The computing conundrum

9

Energy frontier: HL-LHC
• 10× GDWD�YV��5XQ�����ĺ�H[DE\WHV
• 200PU (vs. ~30PU in Run 2)
• CMS upgrades: (similar for ATLAS)
o 15× increase in pixel channels
o 65× increase in calorimeter channels

HEP Computing Challenges

2Kevin PedroCHEP 2019

136PU event (2018)

Intensity frontier: DUNE

• Largest liquid argon detector 
ever designed

• ~1M channels, 1 ms integration 
time w/ MHz sampling
ĺ�����SHWDE\WHV�\HDU

CPU needs for particle physics will increase by
more than an order of magnitude in the next decade

2017 JINST 12 C01042

Figure 7. Event display of a simulated high pT jet in the HGCAL with 140 pileup overlayed. Courtesy of
Lindsey Gray [9].

Figure 8. Electron identification e�ciency and fake rate (left) and jet energy resolution (right) in the
simulation comparing current detector with upgraded one in high pileup environment.
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Compute needs growing by more than 10x 
Environments ge!ing more complex 

Need more sophisticated analysis techniques

A quest for accelerated Machine Learning inference

Offline
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Machine learning
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Observed (Q, U) Reconstructed (E, κ)

Energy Intensity Cosmic

A. Himmel, E. Niner, F. Pshihas et al. 
https://arxiv.org/abs/1604.01444 

1st deployed in oscillation analysis 
https://arxiv.org/abs/1703.03328 

NOνA event classification Identification of boosted Higgs jet 
decay to two bottom quarks

Reconstruction of CMB polarization 
map from Stokes parameters

J. Duarte et al.,  CMS DP-2018/046 J. Caldeira, B. Nord, et al.,  
https://arxiv.org/abs/1810.01483

Deep learning 
improvement: 

Effective 40% 
increase in 

NOνA active 
volume

2X increase in 
signal 

efficiency over 
“shallow” 
learning

50% less noise vs. traditional methods 
across large range of scales 

Ifbwz!gmbwps!kfu!
ubhhjoh

Accelerated machine learning opens up AI application domain in real-time system 
and offers novel solutions to computing challenges. See our white paper.

https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf
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No faster CPUs for free
GPU coprocessors as a service for deep learning inference in high energy physics 3
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Figure 1. Computing needs projections for the CMS (upper) and ATLAS (lower)
experiments at the LHC [8–10]. For ATLAS, the computing needs estimate is
shown under the baseline computing model and under di↵erent R&D scenarios,
while for CMS, the estimate is shown without including ongoing R&D in di↵erent
collider conditions. Computing growth assuming a 10–20% CPU budget increase
is also shown. MHS06-years (kHS06-years) stands for 106 (103) HEPSPEC06 per
year, a standard CPU performance metric for high energy physics. The di↵erent
LHC operating runs are also indicated. A large upgrade to the collider and all
LHC detectors will occur between Run 3 and Run 4, starting in 2026.

Challenge
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#Trending in Industry: Heterogeneous Computing 7

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Advances driven by
big data explosion 
& machine learning 



M.LIU#Heterogeneous Computing Paradigm 8aaS or direct connect

37

COPROCESSOR  
(GPU,FPGA,ASIC)

COPROCESSOR  
(GPU,FPGA,ASIC)

COPROCESSOR  
(GPU,FPGA,ASIC)

COPROCESSOR  
(GPU,FPGA,ASIC)

COPROCESSOR  
(GPU,FPGA,ASIC)

Pros:  
less system complexity 

no network latency 

Pros:  
scalable algorithms 

scalable to the grid/cloud 
Heterogeneous heterogeneity (mixed hardwares)
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Published in CSBS

Brainwavefull story

GQHB

Services for Optimized Network Inference on Co-processors

Question:
Can we/How can we take advantage of 

heterogenous computing as-a-service for our big 
data problems?

SONIC

https://arxiv.org/abs/1904.08986
https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge
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‘Teach’ Res-Net 50 about particle physics 10

Featurizer Classifier

1000 classes
(cats, dogs…) 

Res-Net 50 (25M parameters)

CPUGQHB

Train with top 
vs QCD labels

JET VISION? �32

▸ Re-train ResNet-50 to identify the 
origin of jets 

▸ Jet images = pixelated versions of 
calorimeter hits in 2D (η, ϕ)

vs.

top jet QCD jet (on average) (on average)

JET VISION? �32

▸ Re-train ResNet-50 to identify the 
origin of jets 

▸ Jet images = pixelated versions of 
calorimeter hits in 2D (η, ϕ)

vs.

top jet QCD jet (on average) (on average)

QCDTop 
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Quantized Res-Net 50 performance 11

Quantization matters:

• Floating point—> Quantized 
model brainwave’s 
implementation of ResNet50 
on FPGA
• Loss in performance

• Re-train the model with fixed 
precision regains the 
performance

• Retrain ResNet-50 on publicly 
available top quark tagging 
dataset

ĺ New set of weights, 
optimized for physics

o Add custom classifier layers 
to interpret features from 
ResNet-50

Top Tagging with ResNet-50

13

• ResNet-50 model that runs on FPGAs is “quantized”

o Tune weights to achieve similar performance

¾ State-of-the-art results vs. other leading algorithms

LPC Topic of the Week Kevin Pedro

Better
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Is it faster? Inference speed 12

Speed of light→10 ms

Inference time

local
10 ms 
~2 ms on FPGA 
classifying, I/O
HLT

remote
60 ms (includes travel latency)
(10/100) faster than CPU-only 
computations

External 
processing

CMSSW 
module acquire(

FPGA, 
GPU, etc.

produce(

Eve
nt 

da
ta Callback

Event data Callback

Test integrated in CMS software stack
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Computing: data throughput 13

5000 images

JetImageProducer

JetImageProducer

JetImageProducer

 SONIC: LATENCY SCALING TEST  26
M.LIU

•Single FPGA service, multiple CPU requests 
•Each request sends 5000 images 

• Run N simultaneous processes, all sending requests to 1 BrainWave service

• Processes only run JetImageProducer IURP�621,&�ĺ�³ZRUVW�FDVH´�VFHQDULR

o Standard reconstruction process would have many non-SONIC modules

• FPGA performs inference serially (1 image at a time)

Scaling Tests

27LPC Topic of the Week Kevin Pedro

Brainwave Service

Worker Node
JetImageProducer

Worker Node
JetImageProducer…

Worker Node
JetImageProducer

5000 images

N: simultaneous processes

Single Brainwave service

Network

Max data throughout: 600-700 images/sec, Comparable with V100 GPU (with large 
batch sizes).

FPGA-accelerated machine learning inference as a service for particle physics computing 11

Fig. 11: Top: Mean round trip inference latencies for
ResNet-50 on the Brainwave system for di↵erent num-
bers of simultaneous processes. The error bars represent
the standard deviation. Bottom: The full distributions
displayed in “violin” style. The vertical bars indicate
the extrema. The horizontal axis scale is arbitrary.

does not degrade much as the number of simultaneous
jobs increases from 1 to 50, while the throughput in-
creases by a factor of nearly 40 (600 inferences per sec-
ond). The throughput of the service plateaus at around
650 inferences per second; it is limited by the inference
time on the FPGA that is, at best, 1.8 ms. From these
studies, we find that it is more e�cient and also more
cost-e↵ective to have multiple simultaneous CPU pro-
cesses connect to a single FPGA service.

The ratio of simultaneous processes to FPGA ser-
vices is dependent on the other tasks in the process;
typical physics processes run many modules. The tests
we have performed are the most pessimistic scenario
because each process only executes the Brainwave test
module. Therefore, in more realistic workloads where
many tasks are run per process and a majority of those
tasks run on the CPU, we expect that one FPGA ser-
vice will be able to serve one model for many more
than 50 simultaneous CPU processes. Detailed studies
of these more realistic workloads will be performed in
the future.

Fig. 12: Top: Throughput of the FPGA service as the
number of inferences per second for di↵erent numbers
of simultaneous processes. The error bars represent the
standard deviation. Bottom: mean total time and distri-
bution (in seconds) to process 5000 jet images through
ResNet-50 on the Brainwave system for di↵erent num-
bers of simultaneous processes. The vertical bars indi-
cate the extrema. The horizontal axis scale is arbitrary.

5.2 CPU/GPU comparisons

Next, we compare the performance of the Brainwave
platform to CPU and GPU performance for the same
ResNet-50 model. Such comparisons can be greatly af-
fected by many details of the entire computing stack
and vary widely even within the literature. Nonethe-
less, to get a sense of the relative performance, we per-
form two types of tests. First, we do our own stan-
dalone python benchmark tests with the azure-ML im-
plementation of ResNet-50 as well as the TensorFlow

implementation of the ResNet-50 model. Here, we ver-
ify our results against the literature. While many more
detailed studies exist, these benchmarks validate our
numbers against other similar tests. Second, we import
the ResNet-50 model file provided by Brainwave into
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GPU-as-a-service at the LHC
https://arxiv.org/abs/2007.10359

GPU-as-a-service for DUNE
https://arxiv.org/pdf/2009.04509.pdf

https://arxiv.org/pdf/2009.04509.pdf
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Wang et al. GPU-accelerated ML inference aaS for computing in neutrino experiments
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Triton Inference 
Server

Triton Inference 
Server

Triton Inference 
Server

Triton Inference 
Server

AI Model 
Repository

AI Inference Cluster 
(CPU | GPU)

Figure 2. Depiction of the client-server model using Triton where multiple CPU processes on the client
side are accessing the AI model on the server side.

Figure 3. The Google Kubernetes Engine setup which demonstrates how the Local Compute FermiGrid
farm communicates with the GPU server and how the server is orchestrated through Kubernetes.

To scale the NVidia T4 GPU throughput flexibly, we deployed a Google Kubernetes Engine (GKE)
cluster for server-side workloads. The cluster is deployed in the US-Central data center, which is located in
Iowa; this impacts the data travel latency. The cluster was configured using a Deployment and ReplicaSet.
These are Kubernetes artifacts for application deployment, management and control. They hold resource
requests, container definitions, persistent volumes, and other information describing the desired state of the
containerized infrastructure. Additionally, a load-balancing service to distribute incoming network traffic
among the Pods was deployed. We implemented Prometheus-based monitoring, which provided insight
into three aspects: system metrics for the underlying virtual machine, Kubernetes metrics on the overall
health and state of the cluster, and inference-specific metrics gathered from the Triton Inference Server via
a built-in Prometheus publisher. All metrics were visualized through a Grafana instance, also deployed
within the same cluster. The setup is depicted in Fig. 3.

Frontiers 7

Example in neutrino: speedup, saturate GPUs 
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Accelerating Proto-DUNE reconstruction 16Neutrino case study
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h!ps://arxiv.org/abs/2009.04509
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https://arxiv.org/pdf/2009.04509.pdf

Proto-DUNE  
Largest LArTPC ever built 

Busy environment: cosmic ray 
muons & beam 

Reconstruction chain: 
Noise mitigation,  
hit finding,  
pandora pattern recognition,  
 -> CNN EmTrkMichelId  

https://arxiv.org/pdf/2009.04509.pdf
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Breakdown

45

~11s

11s ~ tpreprocess    +    ttransmit +    ttravel    +    tGPU
7s 

On CPU, 
preparing NN 

inputs

2s 
Based on 

2Gbps ethernet 
bandwidth

0.4s 
Ping latency 

between Iowa 
and FNAL

1.8s 
Time on the 

GPU

** subtleties in the numbers: a!ected by dynamic batching, ethernet bandwidth, and 
batch sizes, can change total time by ~6s more 

Speed up with GPU server 17

Wang et al. GPU-accelerated ML inference aaS for computing in neutrino experiments

Figure 1. Architecture of the neural network used by the EmTrackMichelId module in the ProtoDUNE-SP
reconstruction chain, a convolutional (2DConv) layer is flattened to two fully connected layers.

overfitting. The second FC layer splits into two separate branches. The first branch terminates in three
outputs that are constrained to a sum of one by a softmax activation function, and the second branch
terminates in a single output with a sigmoid activation function that limits its value within a range of 0 to 1.
The total number of trainable parameters in this model is 11,900,420.

2.3 GPU inference as a service with LArSoft

ProtoDUNE-SP reconstruction code is based on the LArSoft C++ software framework [28], which
provides a common set of tools shared by many LArTPC-based neutrino experiments. Within this
framework, EmTrackMichelId, which is described in Section 2.1, is a LArSoft “module” that makes
use of the PointIdAlg “algorithm.” EmTrackMichelId passes the wire number and peak time associated
with a hit to PointIdAlg, which constructs the patch and performs the inference task to classify it.

In this study, we follow the SONIC approach that is also in development for other particle physics
applications. It is a client-server model, in which the coprocessor hardware used to accelerate the neural
network inference is separate from the CPU client and accessed as a (web) service. The neural network
inputs are sent via TCP/IP network communication to the GPU. In this case, a synchronous, blocking
call is used. This means that the thread makes the web service request and then waits for the response
from the server side, only proceeding once the server sends back the network output. In ProtoDUNE-SP,
the CPU usage of the workflow, described in Section 2.1, is dominated by the neural network inference.
Therefore, a significant increase in throughput can still be achieved despite including the latency from the
remote call while the CPU waits for the remote inference. An asynchronous, non-blocking call would be
slightly more efficient, as it would allow the CPU to continue with other work while the remote call was
ongoing. However, this would require significant development in LArSoft for applications of task-based
multithreading, as described in Ref. [29].

Frontiers 5

ProtoDUNE reconstruction
• Largest LArTPC ever built 

• 7.2 x 6.0 x 6.9 m3 
• 15,360 channels 
• Wire spacing 5 mm 
• Readout window 3 ms 

• Lots of activities in the TPC 
• Cosmic ray muons 
• Beam particles 

42

~11.9M parameters 
Each event has ~55k patches 
Most time-consuming module  
in the reco chain. 

Reconstruction chain 
• Noise mitigation and deconvolution 
• Hit !nder 
• Pandora pa"ern recognition 
• CNN EmTrkMichelId

Wang et al. GPU-accelerated ML inference aaS for computing in neutrino experiments

CPU type fraction (%)
AMD EPYC 7502 @ 2.5 GHz 11.7
AMD Opteron 6134 @ 2.3 GHz 0.6
AMD Opteron 6376 @ 2.3 GHz 4.6
Intel Xeon E5-2650 v2 @ 2.6 GHz 30.8
Intel Xeon E5-2650 v3 @ 2.3 GHz 5.2
Intel Xeon E5-2670 v3 @ 2.3 GHz 7.3
Intel Xeon E5-2680 v4 @ 2.4 GHz 17.3
Intel Xeon Gold 6140 @ 2.3 GHz 22.6

Table 1. CPU types and distribution for the grid worker nodes used for the “big-batch” clients (see text for
more details).

Wall time (s)
ML module non-ML modules Total

220 110 330

Table 2. The average CPU-only wall time per job for the different module categories.

3.2 Server-side performance

To get a standardized measure of the performance, we first use standard tools for benchmarking the
GPU performance. Then we perform a stress test on our GPUaaS instance to understand the server-side
performance under high load.

Server standalone performance

The baseline performance of the GPU server running the EmTrackMichelId model is measured using the
perf client tool included in the Nvidia Triton inference server package. The tool emulates a simple client by
generating requests over a defined time period. It then returns the latency and throughput, repeating the test
until the results are stable. We define the baseline performance as the throughput obtained the saturation
point of the model on the GPU. We attain this by increasing the client-side request concurrency—the
maximum number of unanswered requests by the client—until the throughput saturates. We find that the
model reaches this limit quickly at a client-side concurrency of only 2 requests. At this point, the throughput
is determined to be 20, 000± 2, 000 inferences per second. This corresponds to an event processing time
of 2.7± 0.3 s. This is the baseline expectation of the performance of the GPU server.

Saturated server stress test

To understand the behavior of the GPU server performance in a more realistic setup, we set up many
simultaneous CPU processes to make inference requests to the GPU. This saturates the GPUs, keeping the
pipeline of inference requests as full as possible. We measure several quantities from the GPU server in
this scenario. To maximize throughput, we activate the dynamic batching feature of Triton, which allows
the server to combine multiple requests together in order to take advantage of the efficient batch processing
of the GPU. This requires only one line in the server configuration file.

In this setup, we run 400 simultaneous CPU processes that send requests to the GPU inference server.
This is the same compute farm described in Sec. 3.1. The jobs are held in an idle state until all jobs are

Frontiers 9

CNN EmTrkMichelId 

Single GPU server 
(NVIDIA T4)

CPU

~20x speedup of EMMichelTrackID module 
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~11s

Wang et al. GPU-accelerated ML inference aaS for computing in neutrino experiments

which can be accelerated, such that the total time of a CPU-only job is trivially defined as:

tCPU = (1� p)⇥ tCPU + p⇥ tCPU (1)

We replace the time for the accelerated module with the GPU latency terms:

tideal = (1� p)⇥ tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available for the CPU job. We also include tlatency,
which accounts for the preprocessing, bandwidth, and travel time to the GPU. The value of tGPU is fixed,
unless the GPU is saturated with requests. We define this condition as how many GPU requests can be
made while a single CPU is processing an event. The GPU saturation condition is therefore defined as:

NCPU

NGPU
>

tideal

tGPU
. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming there is no saturated GPU. There
are two conditions, unsaturated and saturated GPU, which correspond to NCPU

NGPU
< tideal

tGPU
and NCPU

NGPU
> tideal

tGPU
,

respectively. We can compute the total latency (tSONIC) to account for both cases:

tSONIC = (1� p)⇥ tCPU + tGPU


1 + max

✓
0,

NCPU

NGPU
� tideal

tGPU

◆�
+ tlatency. (4)

Therefore, the total latency is constant when the GPUs are not saturated and increases linearly in the
saturated case proportional to tGPU. Substituting Eq. (2) for tideal, the saturated case simplifies to:

tSONIC = tGPU ⇥ NCPU

NGPU
. (5)

3.4 Measurements deploying SONIC

To test the performance of the SONIC approach, we use the setup described in the “server stress test”
in Section 3.2. We vary the number of simultaneous jobs from 1–400 CPU processes. To test different
computing model configurations, we run the inference with two different batch sizes: 235 (small batch) and
1693 (large batch). This size is specified at run time through a parameter for the EmTrackMichelId module
in the FHiCL [32] configuration file describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the batch size to 1693 reduces the number
of inference calls sent to the Triton server to 32 batches per event, which decreases the travel latency. We
also test the performance impact of enabling or disabling dynamic batching on the server.

In Fig. 5 (left), we show the performance results for the latency of the EmTrackMichelId module for
small batch size vs. large batch size, with dynamic batching turned off. The most important performance
feature is the basic trend. The processing time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size. After that, the processing time begins to
grow, as the GPU server becomes saturated and additional latency is incurred while service requests are
being queued. For example, in the large batch case, the performance of the EmTrackMichelId module is
constant whether there are 1 or 270 simultaneous CPU processes making requests to the server. Therefore,
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using less than 270 simultaneous CPU processes for the 4-GPU server is an inefficient use of the GPU
resources; and we find that the optimal ratio of CPU processes to a single GPU is 68:1.

As described in Section 3.3, 7 s of the module time is spent on the CPU for preprocessing to prepare
the inputs for neural network inference. The term ttravel is computed based on a measured round trip ping
time of 12ms for a single service request. Therefore, for small (large) batch size, the total ttravel per event
is 2.8 s (0.4 s). The difference between the corresponding processing times for the different batch sizes
roughly corresponds to that 2.4 s. We also see that in the small batch size configuration, the GPU server
saturates earlier, at about 190 simultaneous CPU processes. In comparison, the large batch size server
saturates at about 270 simultaneous processes. This is because the GPU is more efficient with larger batch
size: at a batch size of 235 (1693), the GPU server can process about 80,000 (125,000) images per second.
The overall performance using the SONIC approach is compared to the model from Section 3.3. We see
that performance matches fairly well with our expectations.

In Fig. 5 (right), we show the performance of the SONIC approach for large batch size with dynamic
batching enabled or disabled, considering up to 400 simultaneous CPU processes. We find that at large
batch size, for our particular model, the large batch size of 1693 is already optimal and the performance is
the same with or without dynamic batching. We also find that the model for large batch size matches the
data well.

Figure 5. Processing time for the EmTrackMichelId module as a function of simultaneous CPU processes,
using a Google Kubernetes 4-GPU cluster. Left: small batch size vs. large batch size, with dynamic
batching turned off. Right: large batch size performance with dynamic batching turned on and off. In both
plots, the dotted lines indicate the predictions of the latency model, specifically Eq. (4).

We stress that, until the GPU server is saturated, the EmTrackMichelId module now takes about 13 s per
event in the most optimal configuration. This should be compared against the CPU-based inference, which
takes 220 s on average. The EmTrackMichelId module is accelerated by a factor of 17, and the total event
processing time goes from 330 s to 123 s on average, a factor of 2.7 reduction in the overall processing
time.

Finally, it is important to note that throughout our studies using commercially available cloud computing,
we have observed that there are variations in the GPU performance. This could result from a number of
factors beyond our control, related to how CPU and GPU resources are allocated and configured in the
cloud. Often, these factors are not even exposed to the users and therefore difficult to monitor. That said,
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which can be accelerated, such that the total time of a CPU-only job is trivially defined as:

tCPU = (1� p)⇥ tCPU + p⇥ tCPU (1)

We replace the time for the accelerated module with the GPU latency terms:

tideal = (1� p)⇥ tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available for the CPU job. We also include tlatency,
which accounts for the preprocessing, bandwidth, and travel time to the GPU. The value of tGPU is fixed,
unless the GPU is saturated with requests. We define this condition as how many GPU requests can be
made while a single CPU is processing an event. The GPU saturation condition is therefore defined as:
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NGPU
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tideal

tGPU
. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming there is no saturated GPU. There
are two conditions, unsaturated and saturated GPU, which correspond to NCPU

NGPU
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tGPU
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> tideal
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,

respectively. We can compute the total latency (tSONIC) to account for both cases:

tSONIC = (1� p)⇥ tCPU + tGPU


1 + max
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Therefore, the total latency is constant when the GPUs are not saturated and increases linearly in the
saturated case proportional to tGPU. Substituting Eq. (2) for tideal, the saturated case simplifies to:

tSONIC = tGPU ⇥ NCPU

NGPU
. (5)

3.4 Measurements deploying SONIC

To test the performance of the SONIC approach, we use the setup described in the “server stress test”
in Section 3.2. We vary the number of simultaneous jobs from 1–400 CPU processes. To test different
computing model configurations, we run the inference with two different batch sizes: 235 (small batch) and
1693 (large batch). This size is specified at run time through a parameter for the EmTrackMichelId module
in the FHiCL [32] configuration file describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the batch size to 1693 reduces the number
of inference calls sent to the Triton server to 32 batches per event, which decreases the travel latency. We
also test the performance impact of enabling or disabling dynamic batching on the server.

In Fig. 5 (left), we show the performance results for the latency of the EmTrackMichelId module for
small batch size vs. large batch size, with dynamic batching turned off. The most important performance
feature is the basic trend. The processing time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size. After that, the processing time begins to
grow, as the GPU server becomes saturated and additional latency is incurred while service requests are
being queued. For example, in the large batch case, the performance of the EmTrackMichelId module is
constant whether there are 1 or 270 simultaneous CPU processes making requests to the server. Therefore,
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networks, such as FACILE, a FaaST server outperforms GPU as-
a-service implementations by over an order of magnitude. These
results are not contingent on the precise details of the networks
we use as benchmarks. Indeed, we expect similar performance
from FaaST for other network inference applications. FaaST
represents the first open source toolkit intended to make high
performance FPGAs as-a-service available generically.

TABLE I: Summary of the performance of FaaST servers in
terms of events and inferences per second, and bandwidth.
Results for performance on GPUs are taken from Ref. [15].

Algorithm Platform Number of Batch Inf./s Bandwidth
Devices Size [Hz] [Gbps]

FACILE AWS EC2 F1 1 16,000 36 M 23
FACILE Alveo U250 1 16,000 86 M 55
FACILE T4 GPU 1 16,000 8 M 5.1
ResNet-50 AWS EC2 F1 8 10 1400 6.7
ResNet-50 V100 GPU 8 10 1,700 8.1
ResNet-50 ASE 1 1 460 2.2
ResNet-50 T4 GPU 1 10 250 1.2

For inference on GPUs, performance gains with respect
to CPUs typically occur in tasks that can be run with large
batch sizes. This is due to the ability of the GPU to run many
parallel operations. FPGAs, on the other hand, do not gain
exclusively by using large batches. Rather, FPGAs gain as a
result of their ability to perform computations significantly
faster than CPUs and GPUs. As a result, for ResNet-50, our
FaaST server running on the ASE with batch 1 almost doubles
the throughput when compared to a T4 GPU running with
batch 10. This is especially noteworthy given that many tasks
in high energy physics (HEP) workflows that require complex
algorithms are naturally run with low batch size. For example,
in the case of the top quark tagging ResNet-50 model used in
this work, it is conceivable that running with a batch size of 2
might be sufficient to achieve the same physics performance.

One caveat to the performance of FPGAs with small batches
is that transfers to and from the device are typically more
efficient for large batches. This is because the overhead for
transfers can be quite significant. For a similar network to
FACILE, inference at batch size 1 was found to be only 15
times faster than inference at batch 16,000 [38]. However, not
every ML algorithm should be run at maximum batch; this
latency improvement must be weighed against the additional
resources and infrastructure needed to handle a large number
of concurrent inputs on the FPGA.

We have exclusively used ML applications in this work
because of their widespread and growing use in HEP workflows,
as well as their ability to be parallelized. This makes them very
useful target applications for acceleration. However, the FaaST
server design is highly generic. Provided that an algorithm can
be successfully executed on an FPGA, the FaaST model is
capable of enabling as-a-service acceleration. Any functional
FPGA kernel can be accelerated using Vitis Accel in a similar
manner to FACILE.

VI. OUTLOOK

FPGAs have been traditionally been used for various special-
ized tasks. Their low power consumption and extremely fast
processing make them particularly suited for applications across
industry and high energy physics. Their advantages, however,
are not exclusive to these domains and can be leveraged for
many other high performance computing tasks. The FPGAs-as-
a-Service Toolkit we present can assist in the implementation
of FPGAs as a service in a variety of computing workflows
across science.
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in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares, ...)

constructed around a single measurement technology, the data is therefore homogeneous.

In both cases, the measurements are inherently sparse in space, due to the design of the

geometry of the sensors. The measurements therefore do not a-priori fit homogeneous,

grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on more low

level information.

(a)

(b)

(c) (d)

Figure 2. HEP data lends itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

Some data in particle physics can be fractionally interpreted as images and hence
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Accelerated discoveries with Real-Time AI

Offline

processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.
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Figure 1: Latency landscape

In this paper, we do not focus on the L1 triggering requirements and instead consider the gains
from hetergeneous compute resources to improve both our HLT and o�ine processing power.

When considering how best to use new optimized computing resources for physics, we must first
consider the event processing model employed by large physics experiments. An example of the current
compute model is shown in Fig. 2 where event data is processed, often sequentially, across multiple
CPU threads. It is important to note that the basic unit of processing is a single event and performing
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the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time
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