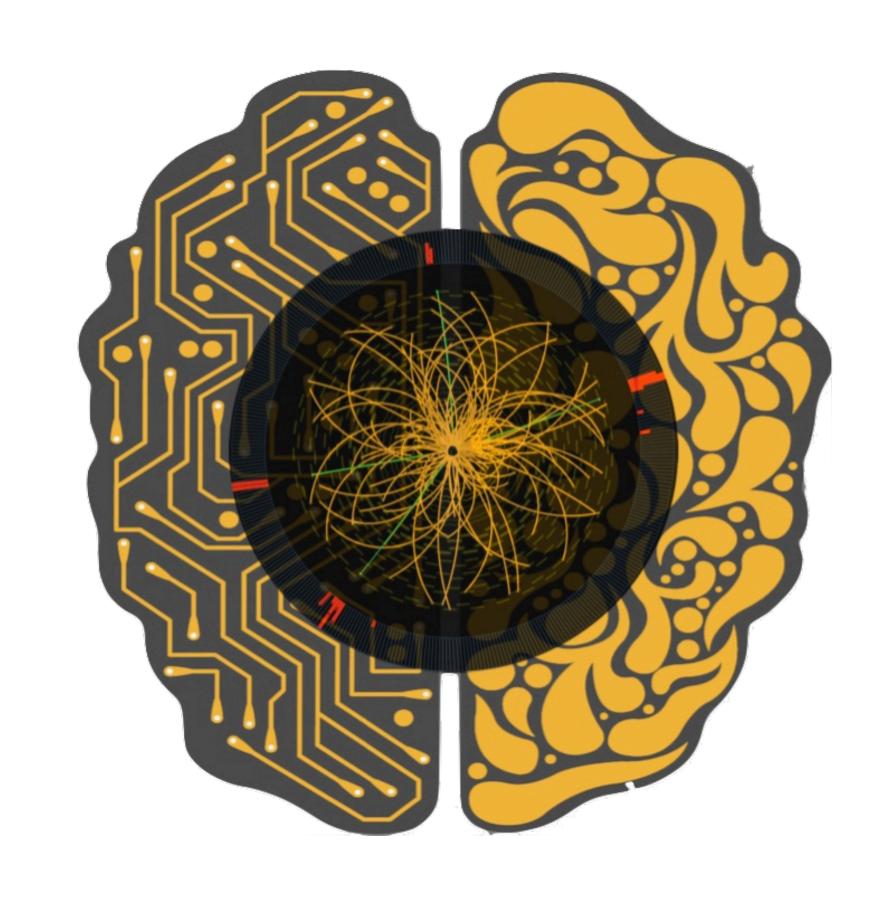
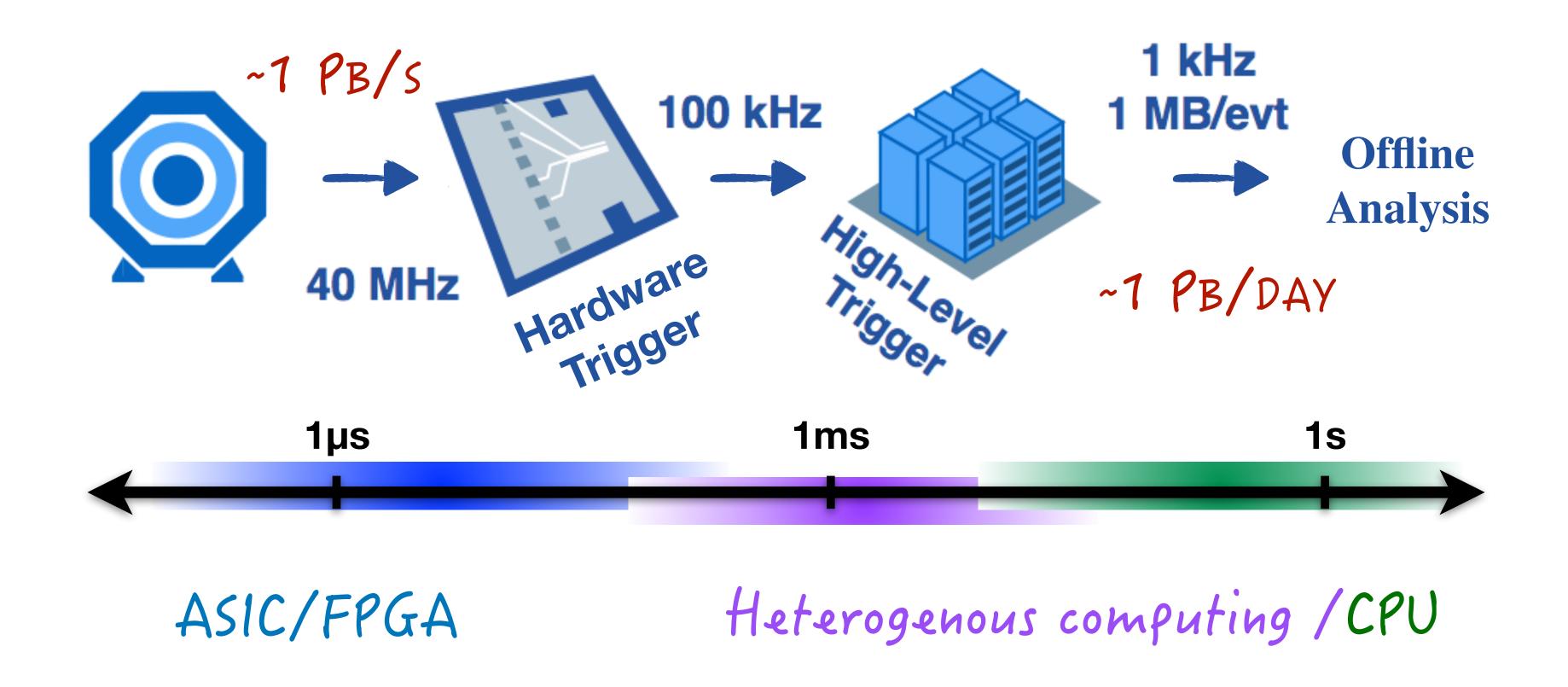
Real-time Artificial Intelligence — with heterogeneous compute

Mia Liu
Purdue University
Oct. 13. 2020
IEEE Real-Time Conference

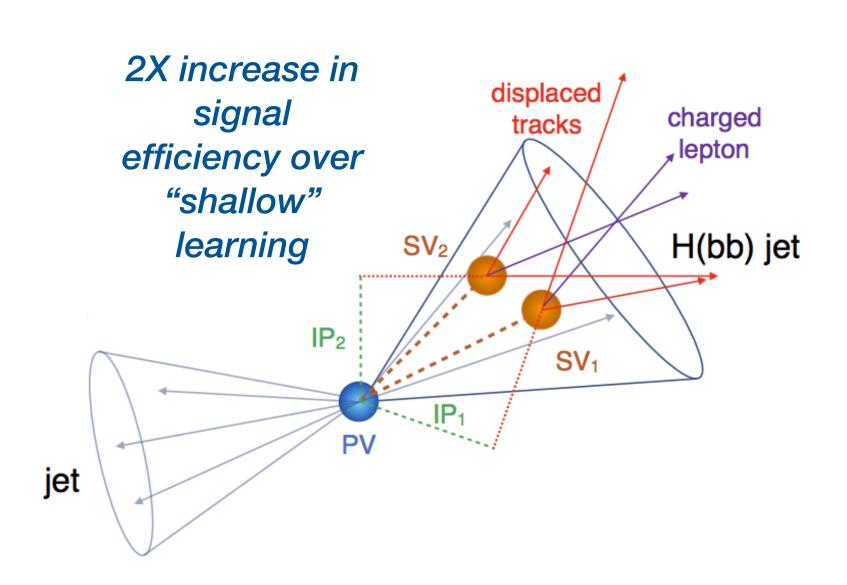


Data processing in Particle Physics

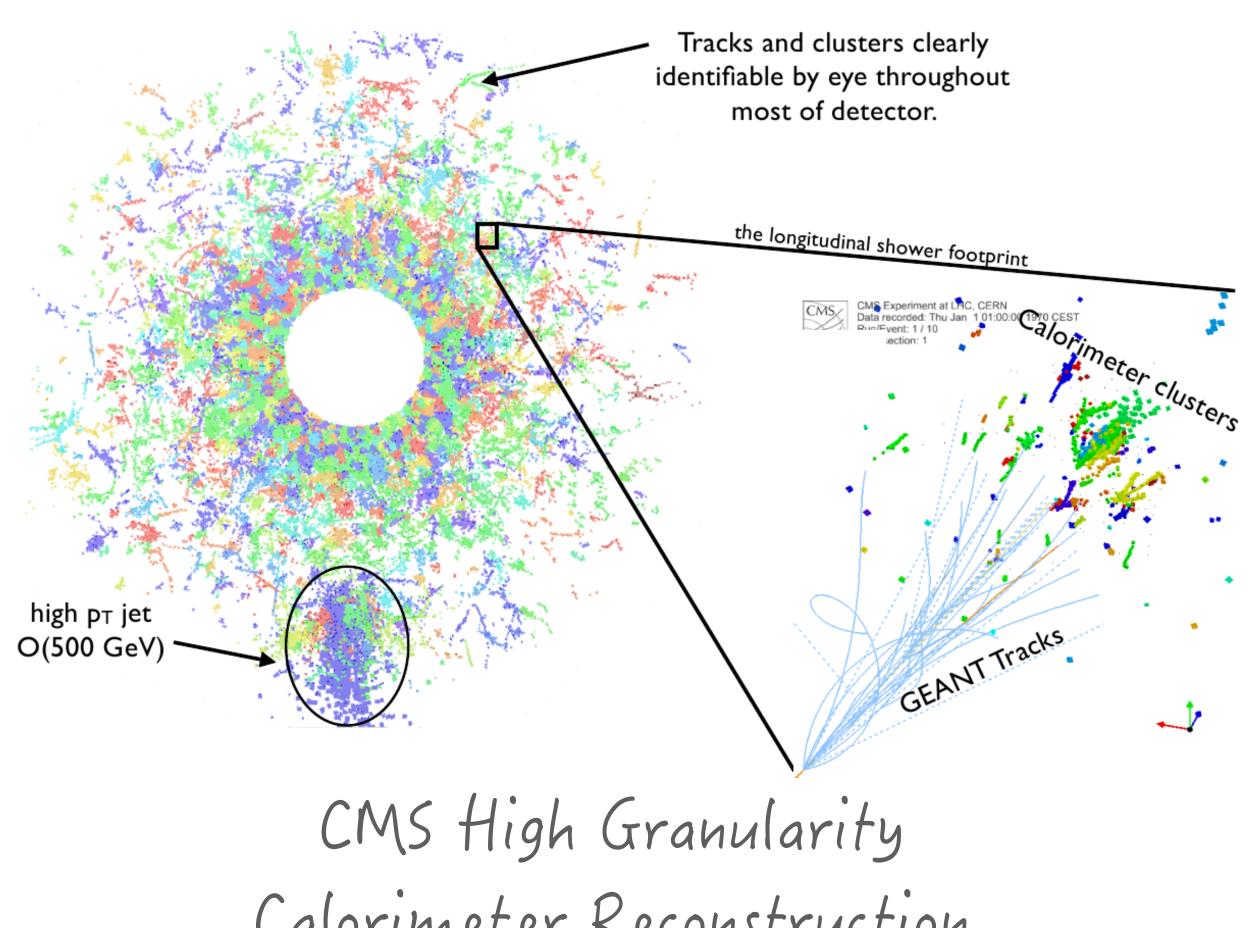


CMS as an example

A quest for accelerated Machine Learning inference



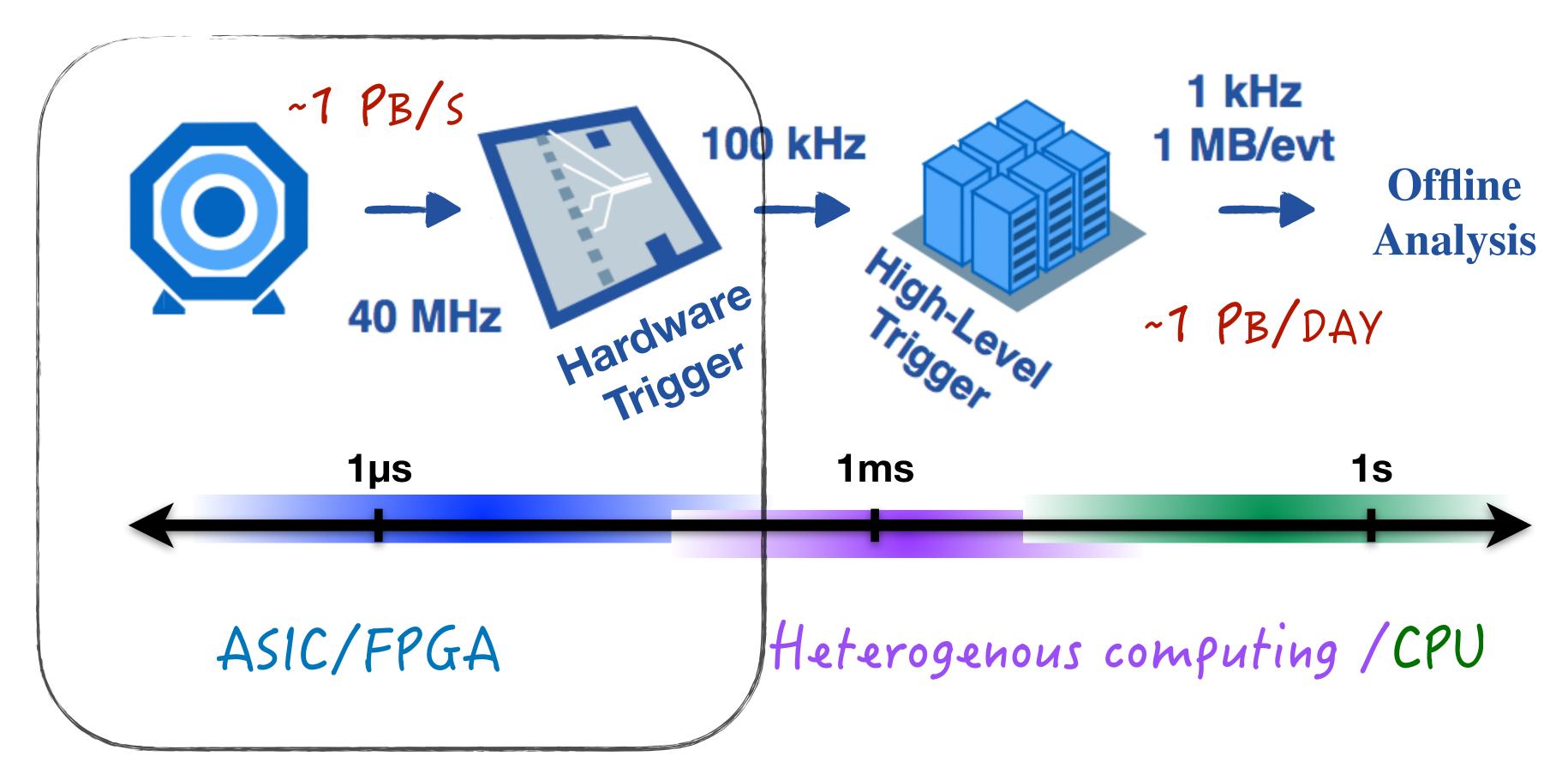
Heavy flavor jet tagging



Calorimeter Reconstruction

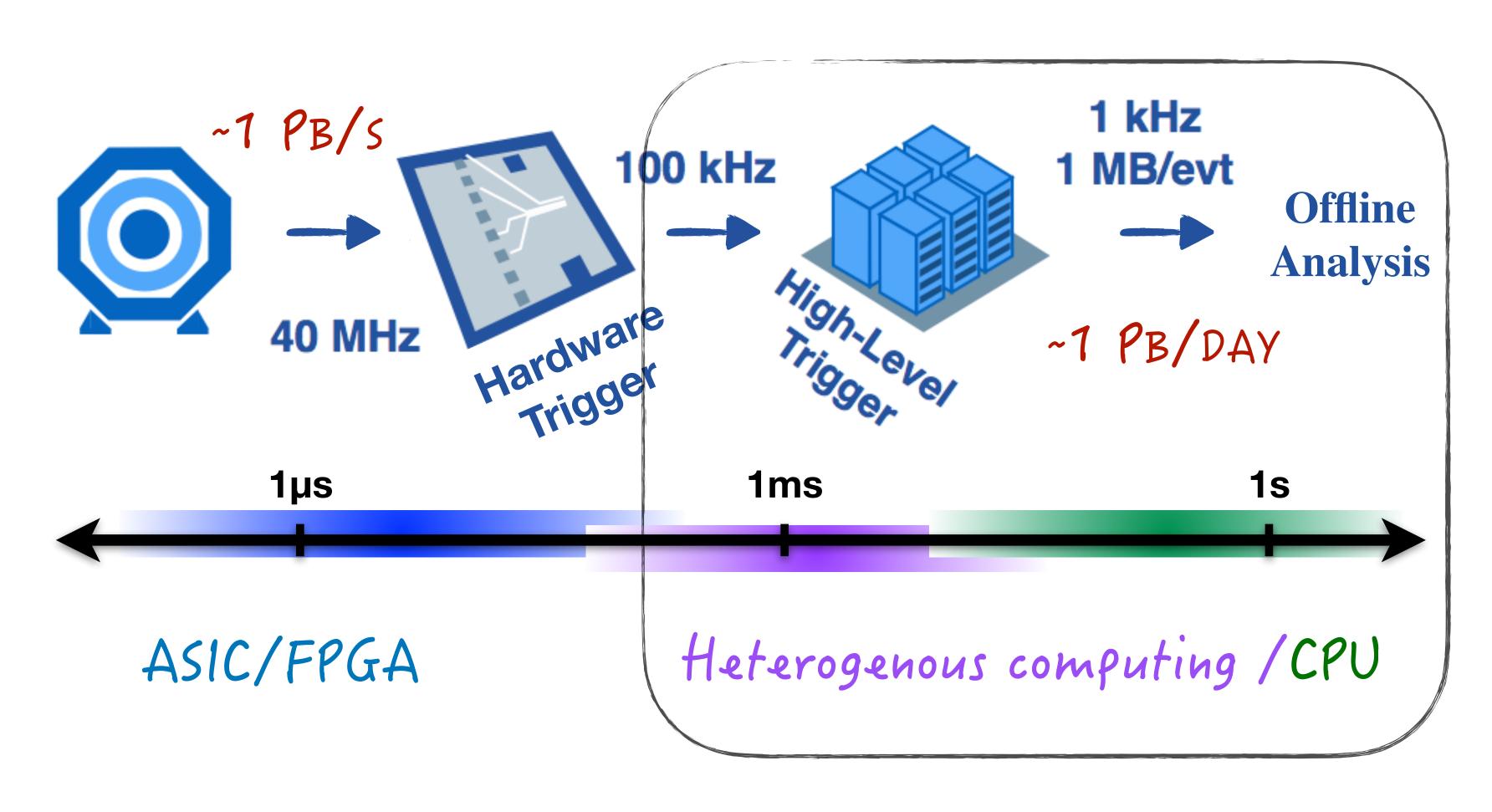
Accelerated machine learning opens up AI application domain in real-time system and offers novel solutions to computing challenges. See our white paper.

Accelerated ML in embedded systems



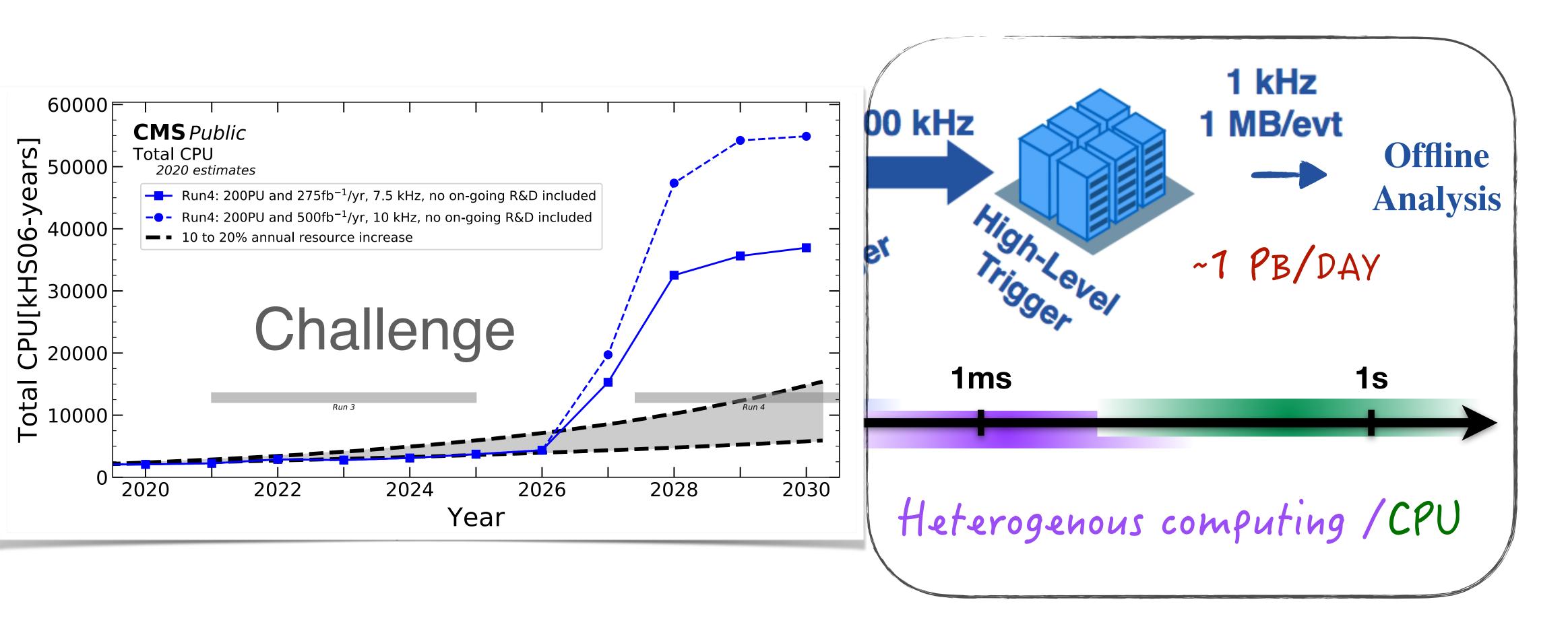
See Nhan's talk on Monday:
Real-time machine learning in embedded systems for particle physics

Accelerated ML for HLT/offline



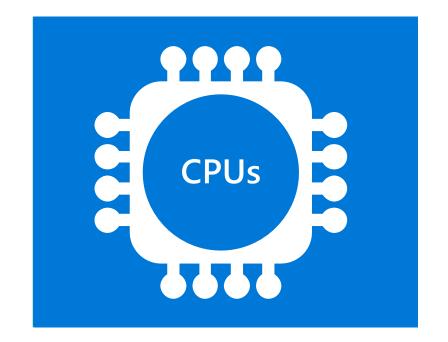
I will focus on this

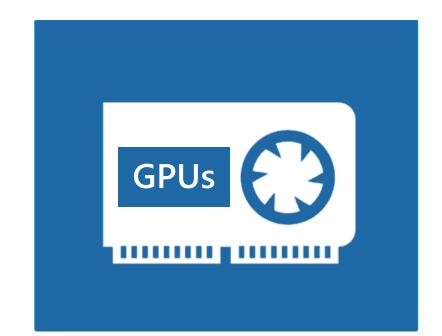
No faster CPUs for free

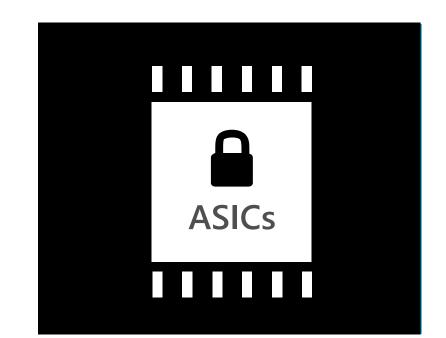


Highlight the opportunities and challenges. Review current developments... with a bias

#Trending in Industry: Heterogeneous Computing

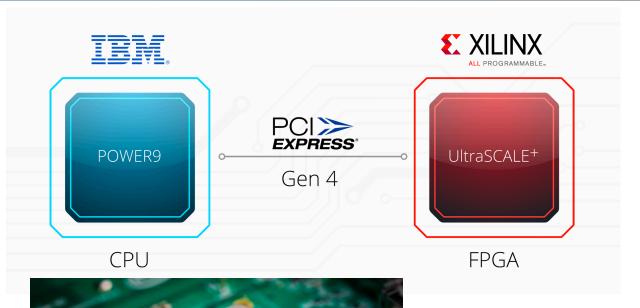


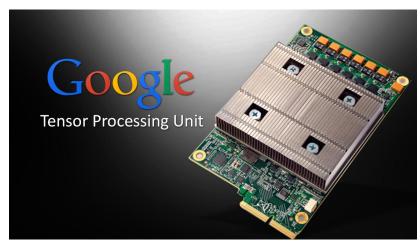




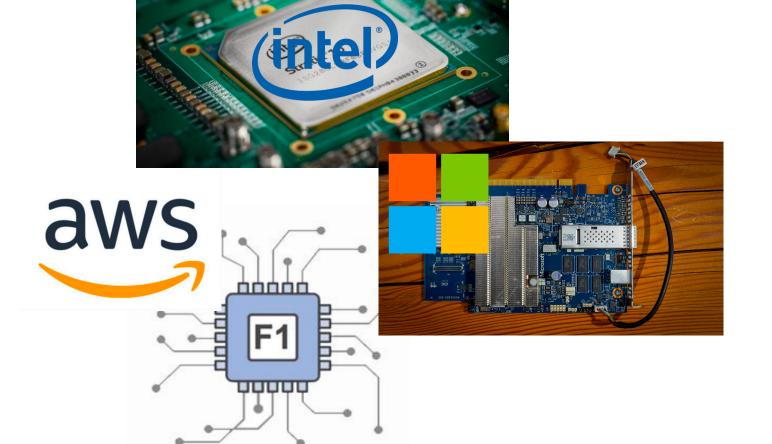
FLEXIBILITY

EFFICIENCY

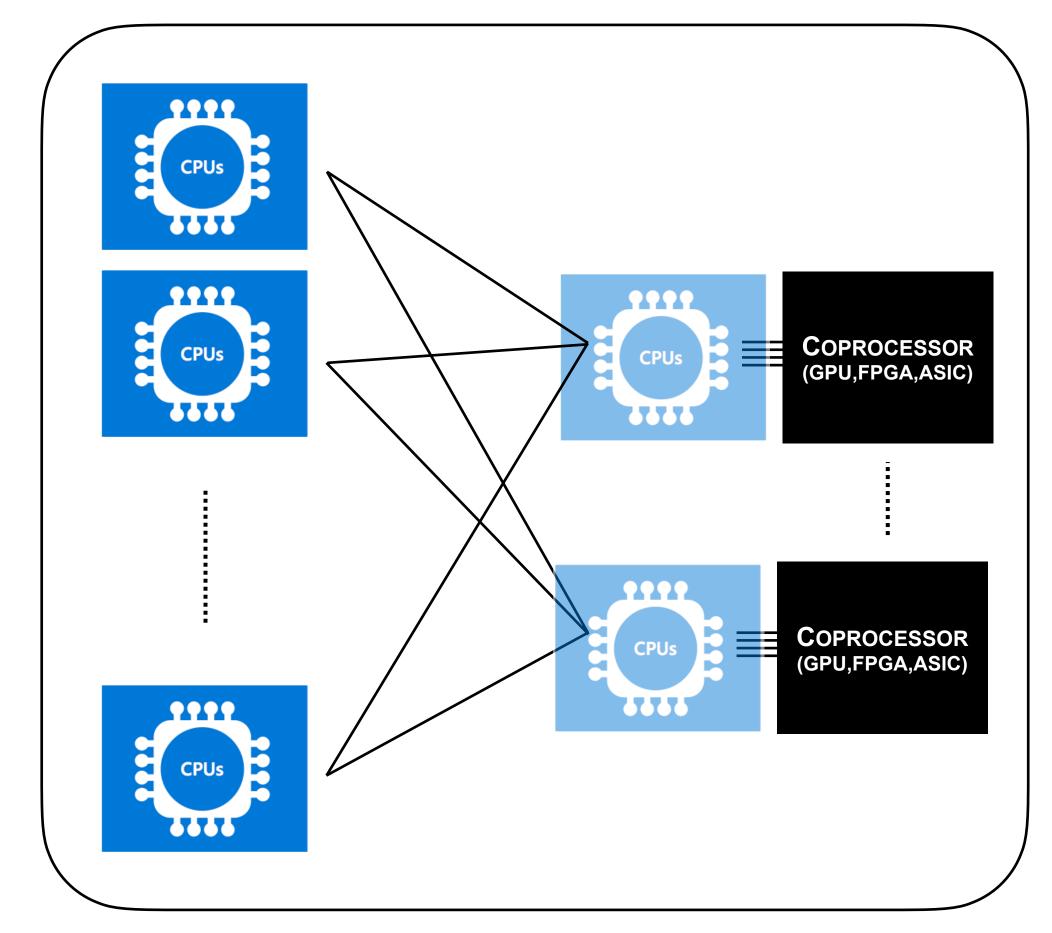




Advances driven by big data explosion & machine learning

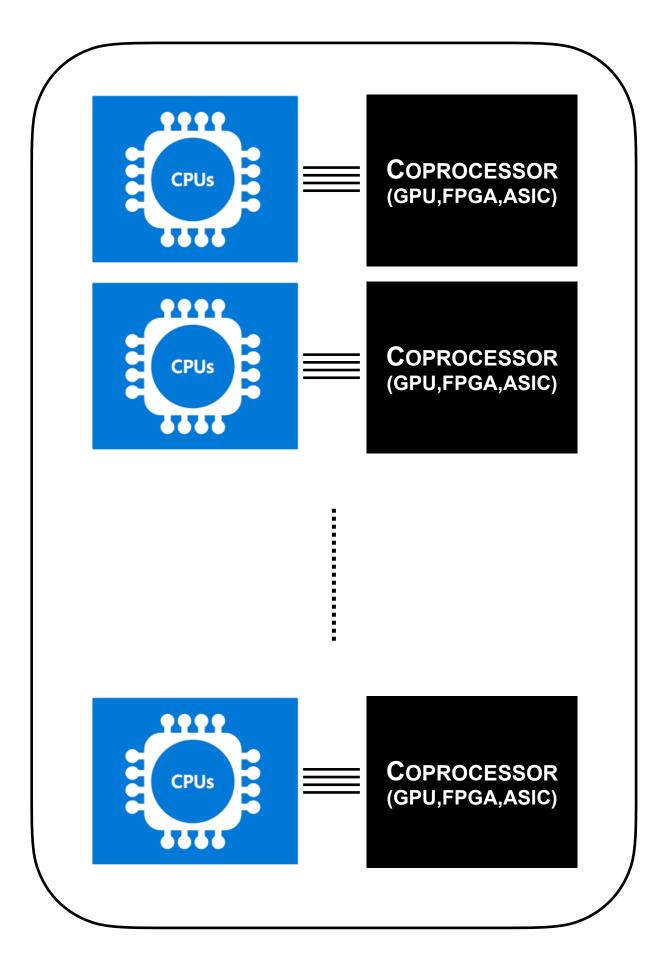


#Heterogeneous Computing Paradigm



Pros:

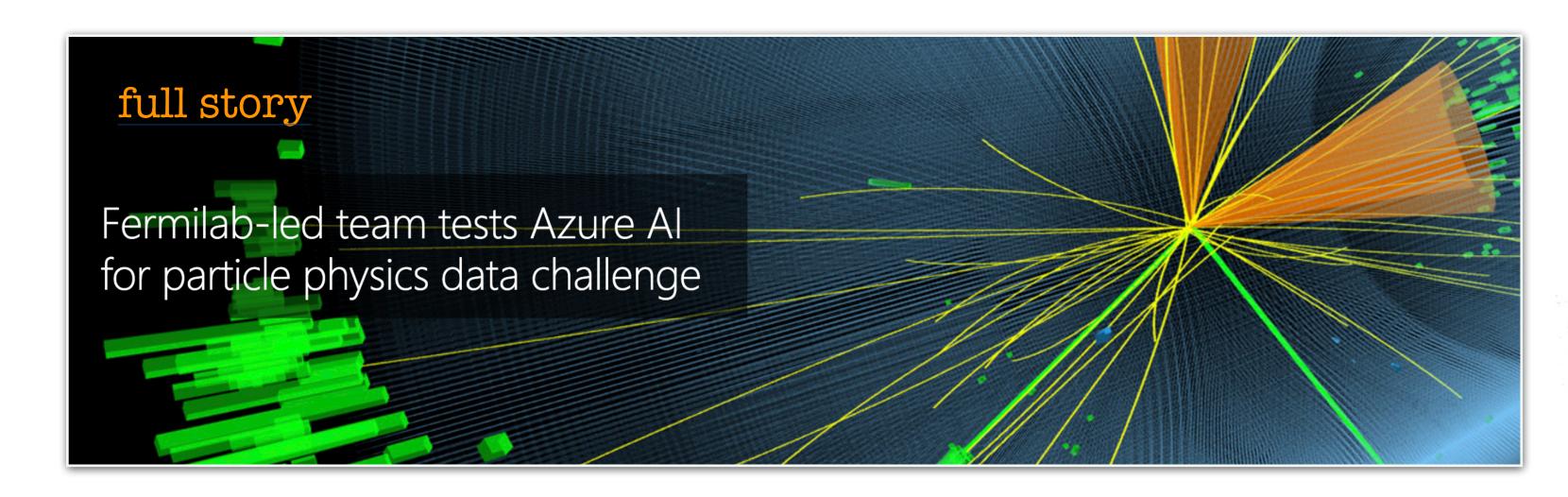
scalable algorithms
scalable to the grid/cloud
Heterogeneous heterogeneity (mixed hardwares)

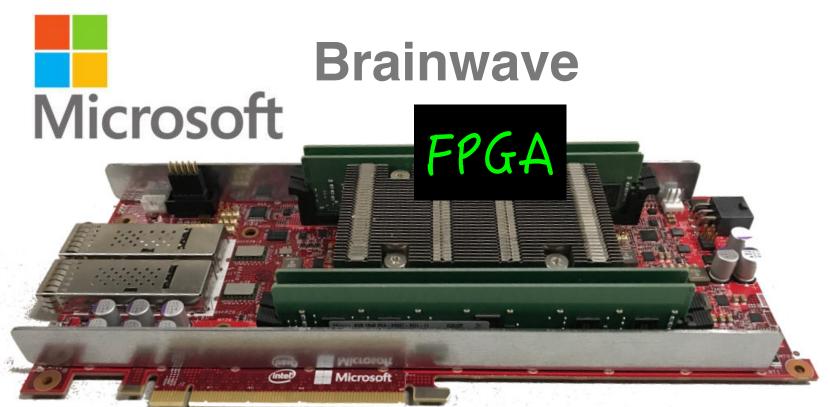


Pros:

less system complexity no network latency

Services for Optimized Network Inference on Co-processors

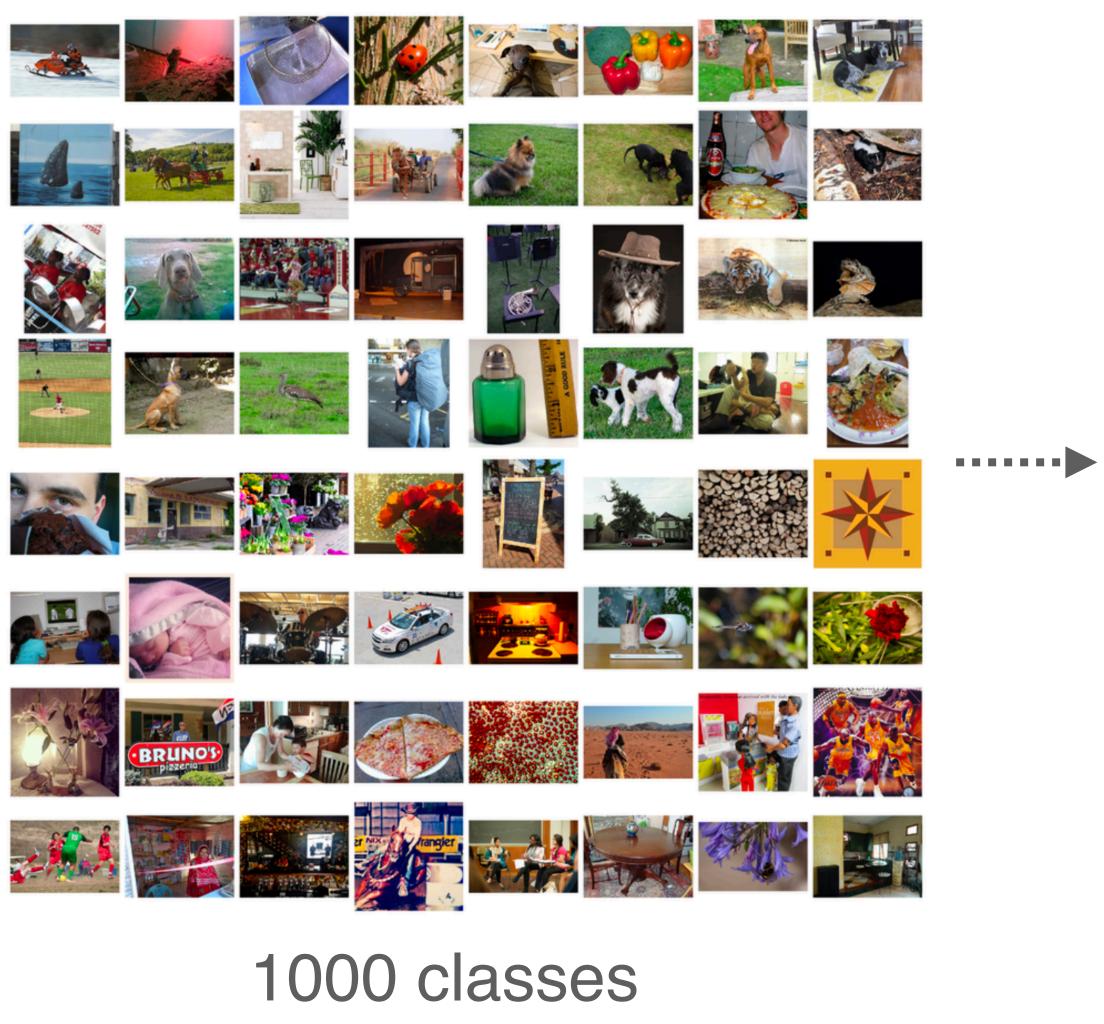




Question:

Can we/How can we take advantage of heterogenous computing as-a-service for our big data problems?

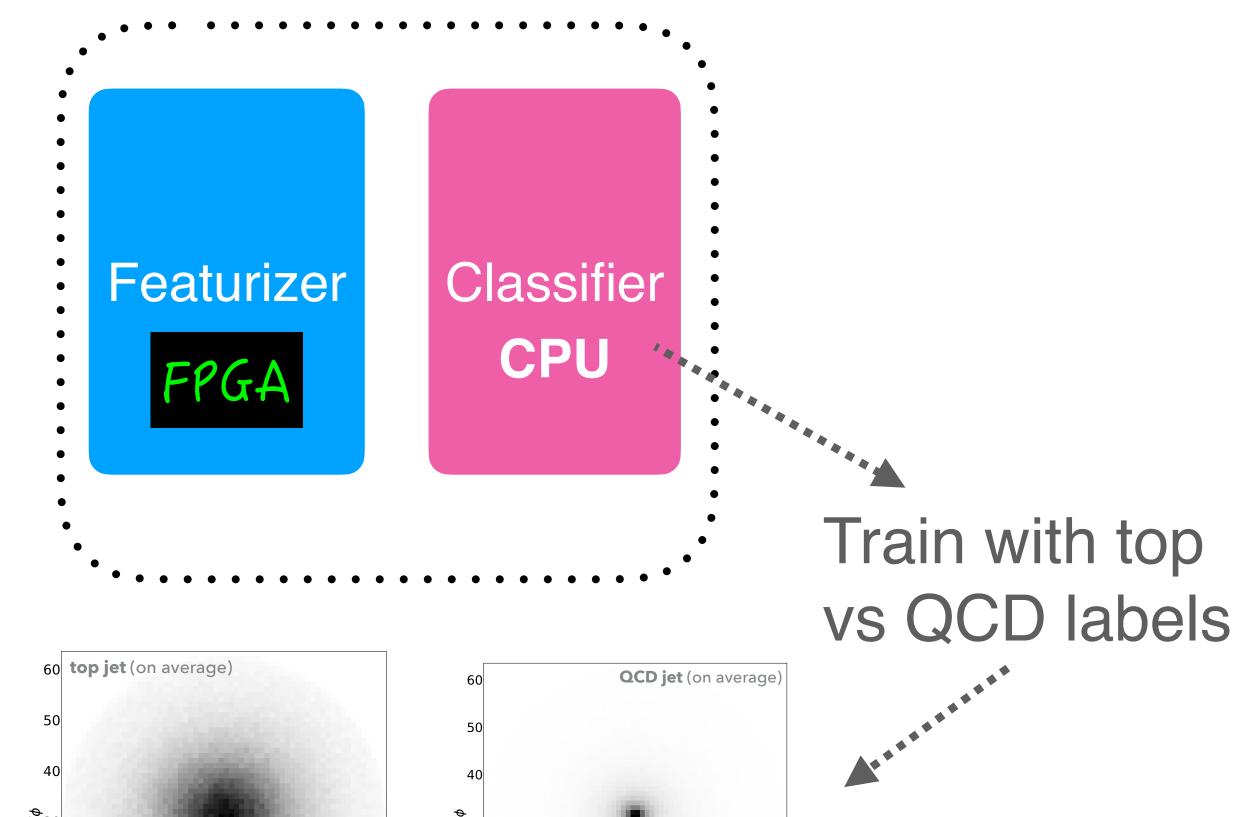
'Teach' Res-Net 50 about particle physics



1000 classes (cats, dogs...)

Res-Net 50 (25M parameters)

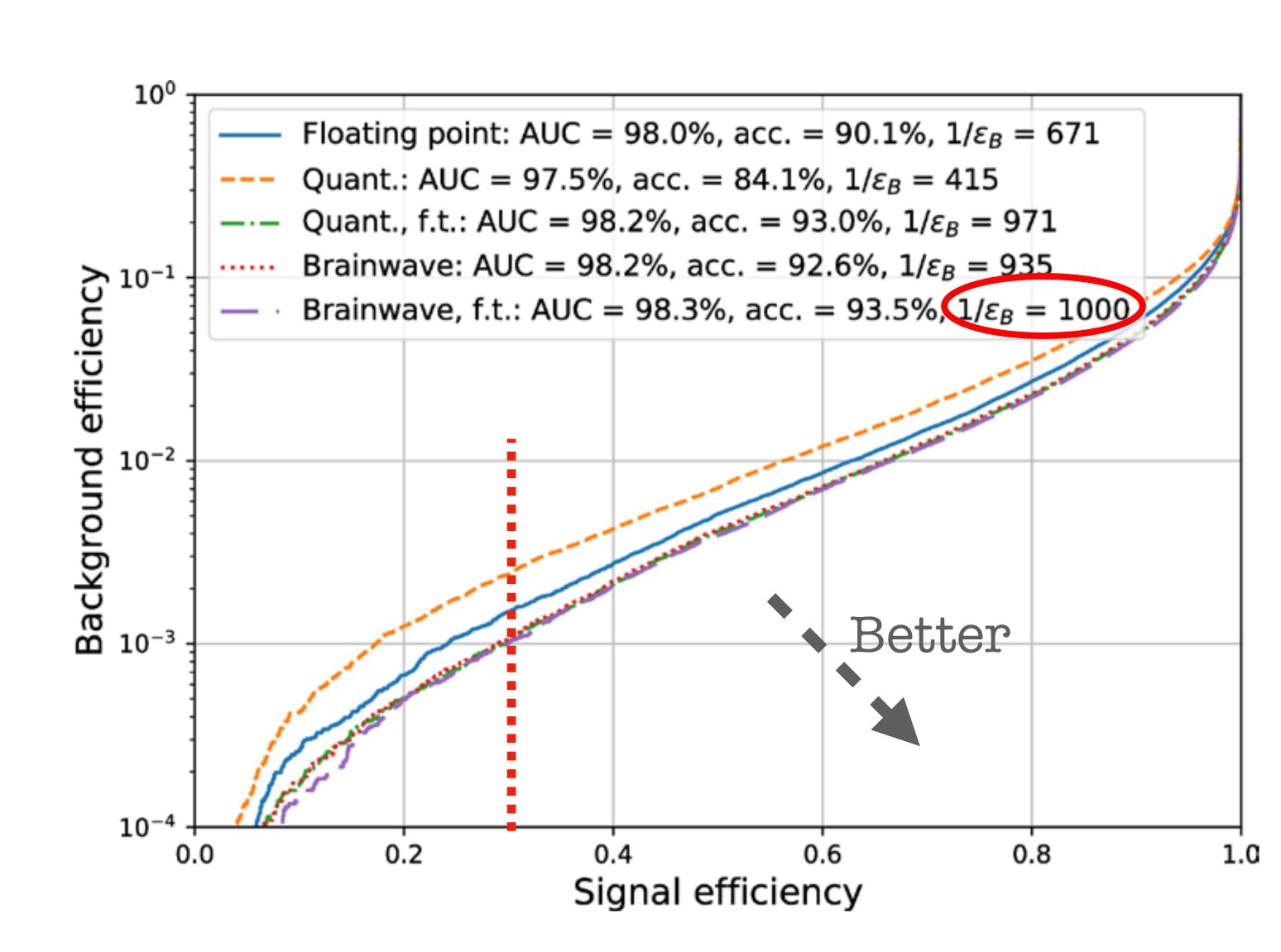
Top



Quantized Res-Net 50 performance

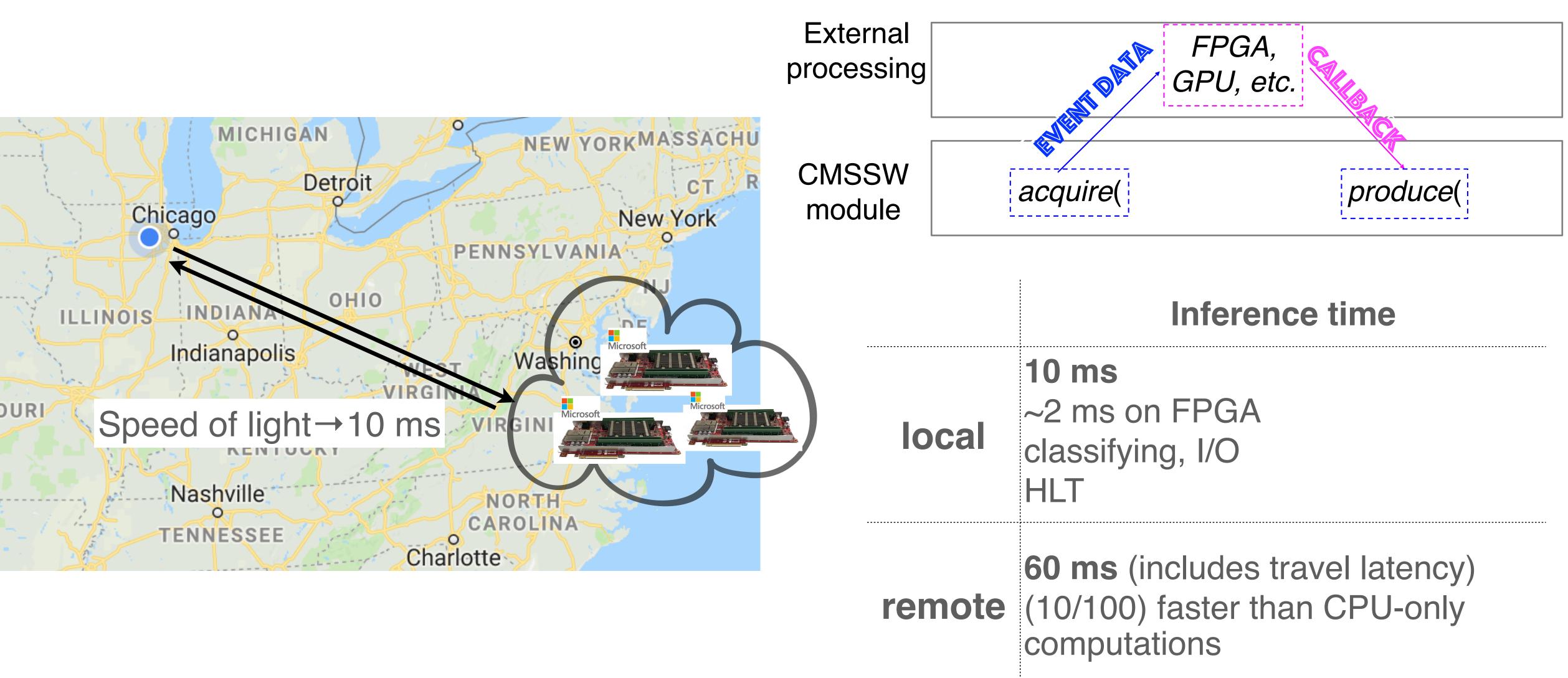
Quantization matters:

- Floating point—> Quantized model brainwave's implementation of ResNet50 on FPGA
 - Loss in performance
- Re-train the model with fixed precision regains the performance

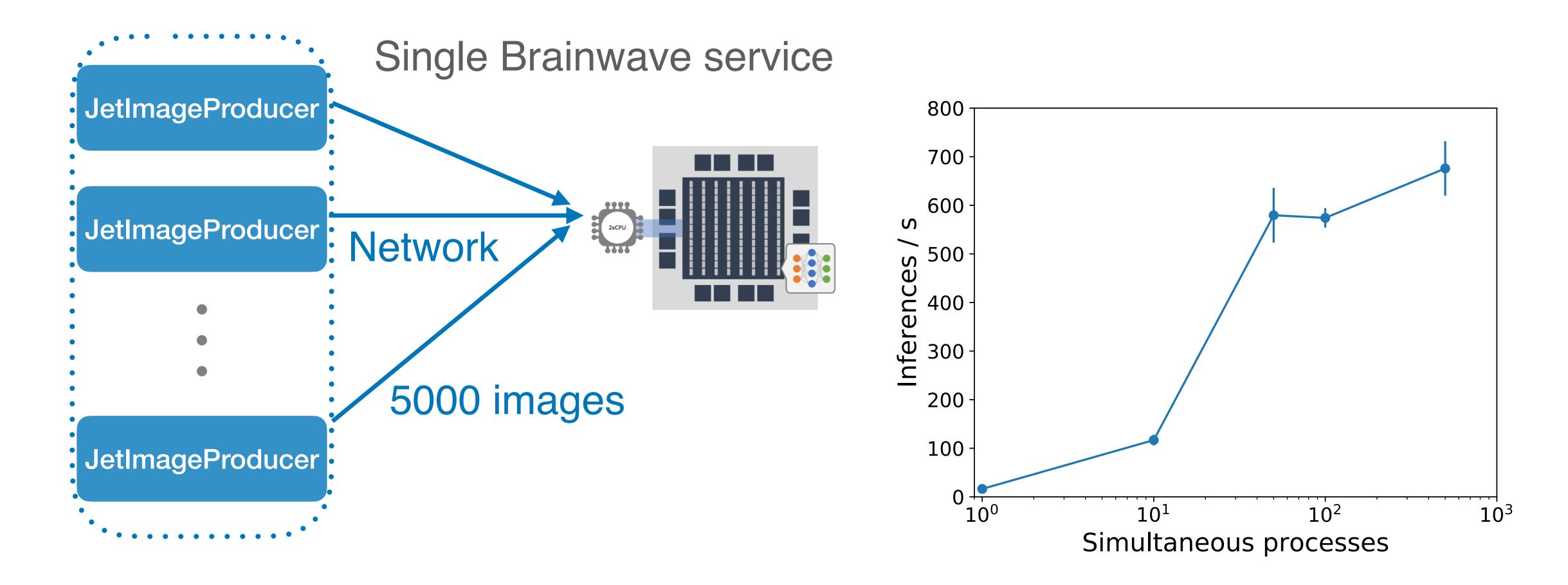


Is it faster? Inference speed

Test integrated in CMS software stack



Computing: data throughput



Max data throughout: 600-700 images/sec, Comparable with V100 GPU (with large batch sizes).

SONIC: latest explorations

GPU-as-a-service at the LHC

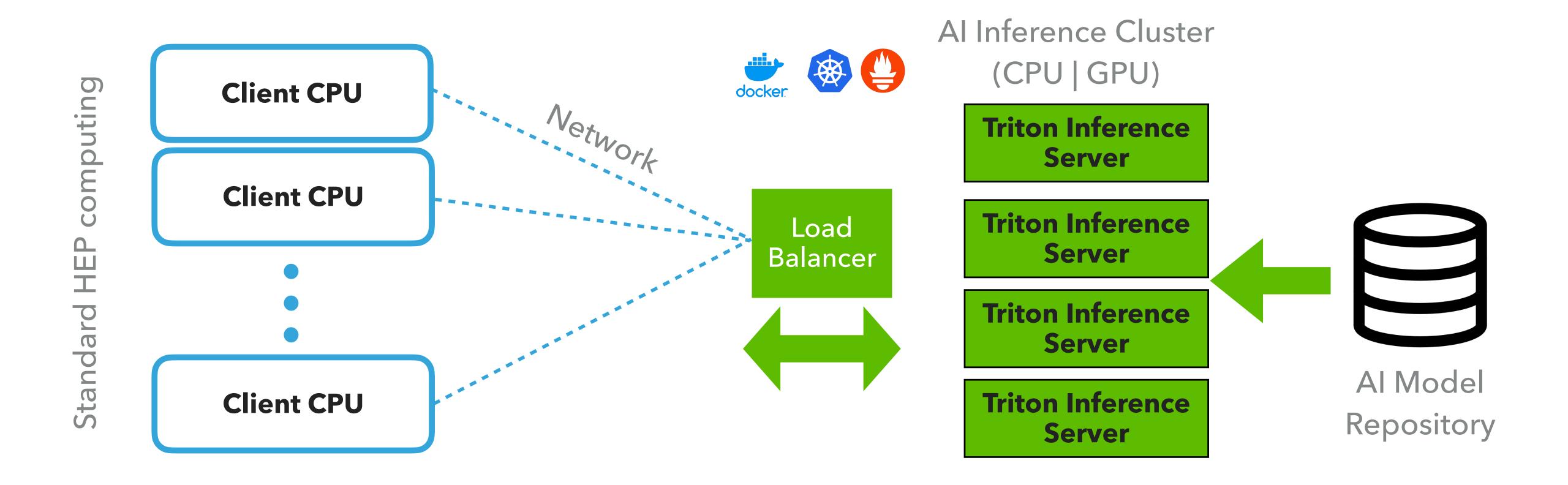
https://arxiv.org/abs/2007.10359

Hardware platforms

GPU-as-a-service for DUNE

https://arxiv.org/pdf/2009.04509.pdf

GPU as-a-service with Triton



Example in neutrino: speedup, saturate GPUs

Accelerating Proto-DUNE reconstruction 16

https://arxiv.org/pdf/2009.04509.pdf

Proto-DUNE Largest LArTPC ever built

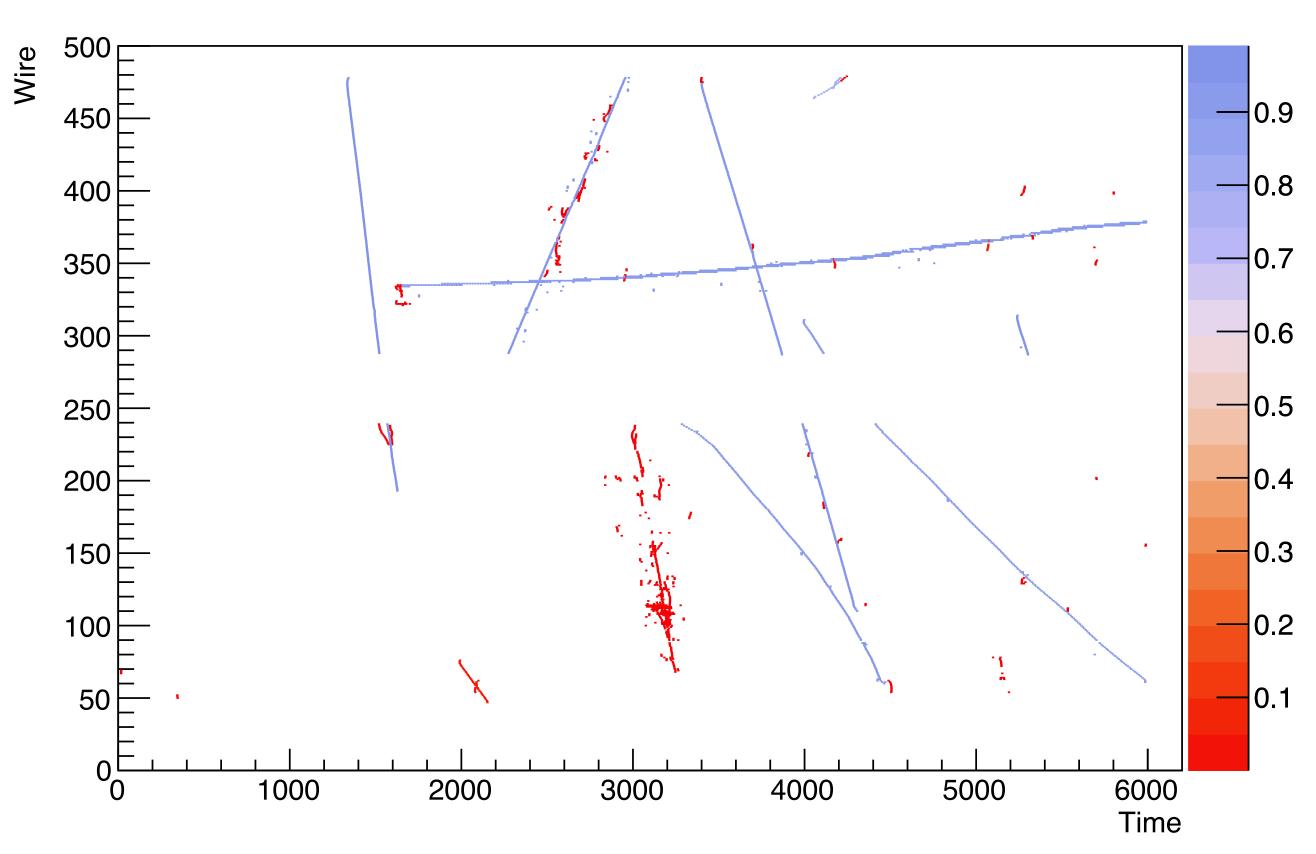
Busy environment: cosmic ray muons & beam

Reconstruction chain:

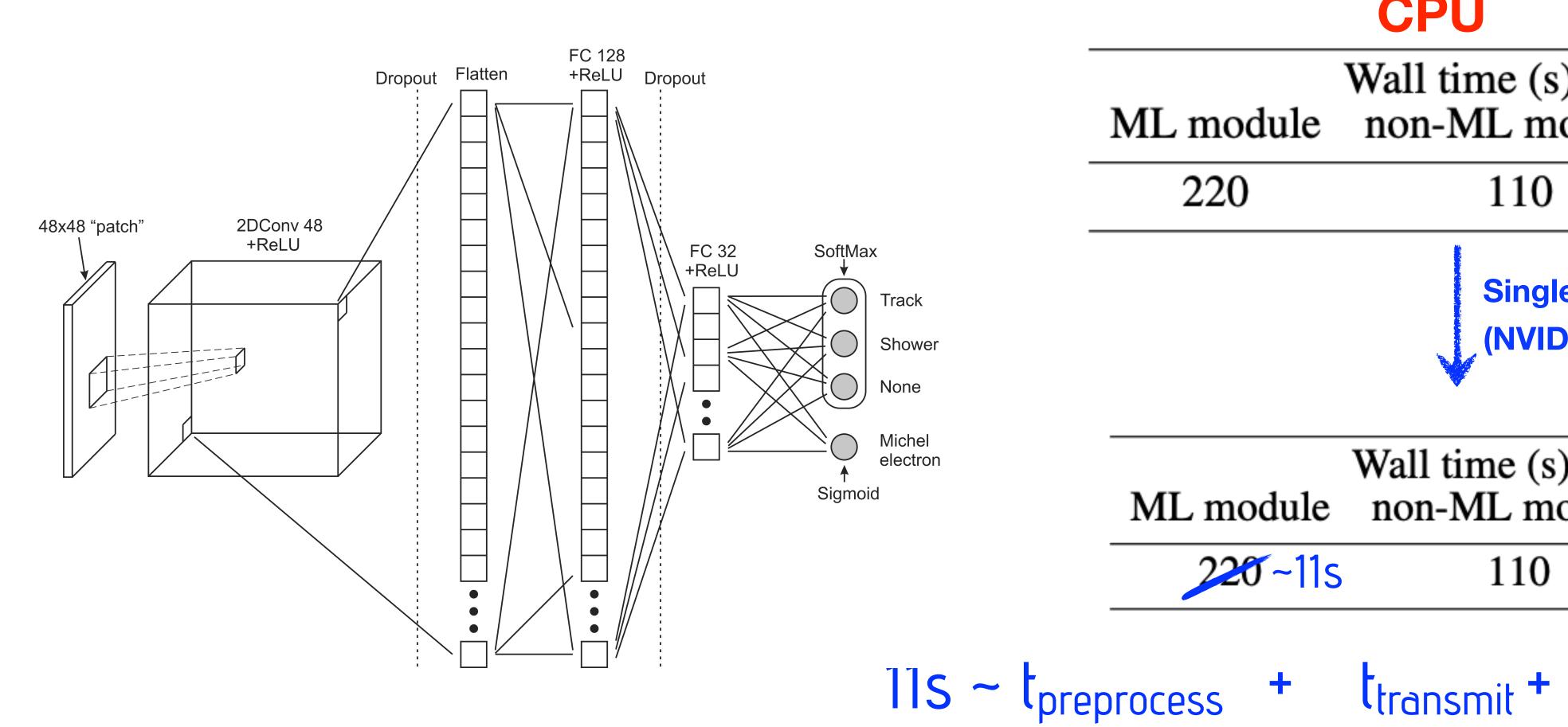
Noise mitigation, hit finding, pandora pattern recognition,

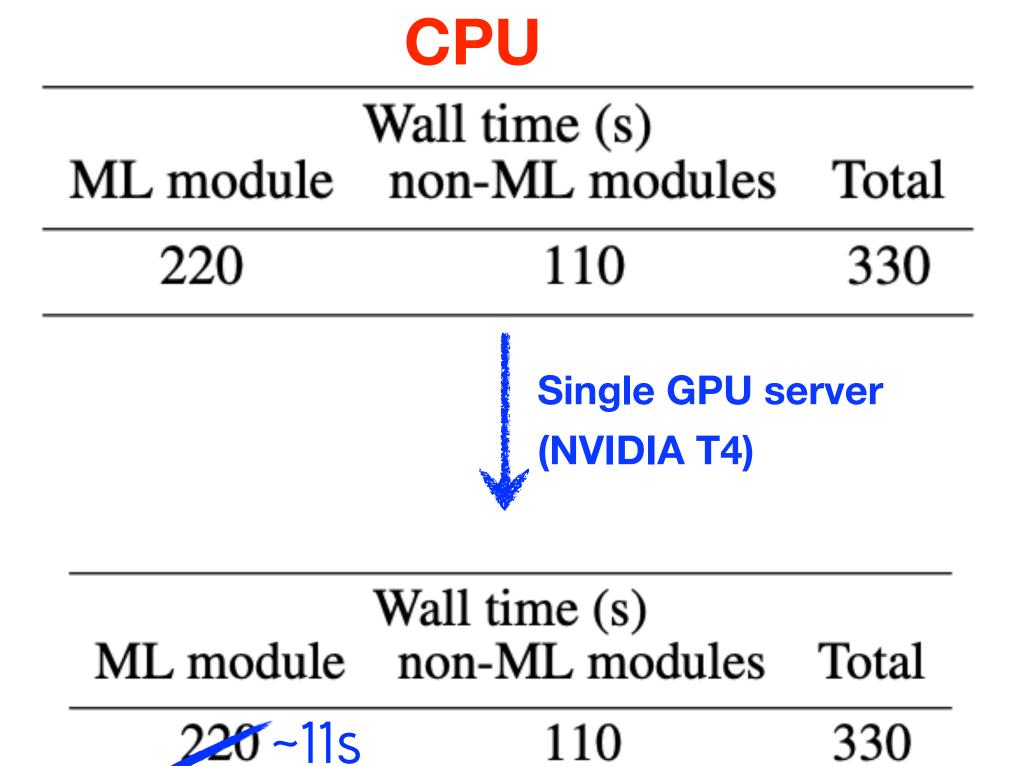
-> CNN EmTrkMichelld

Reconstructed ProtoDUNE-SP Event Labelled with CNN Track Score. Run: 5387, Event: 128178, TPC: 1.



Speed up with GPU server





CNN EmTrkMichelld

~20x speedup of EMMichelTrackID module

On CPU, preparing NN inputs

2s Based on 2Gbps ethernet bandwidth

0.4s Ping latency between lowa and FNAL

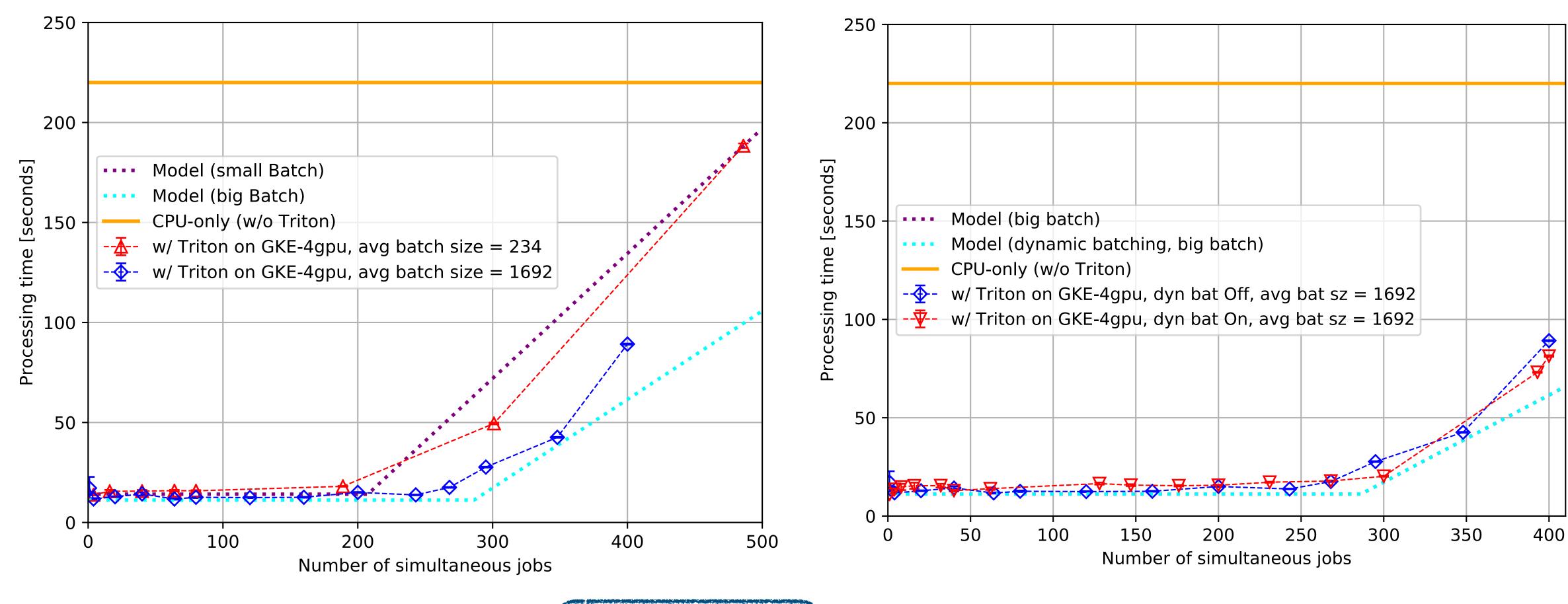
17

1.8s

[GPU

Time on the GPU

Saturating the GPUs



$$t_{\text{SONIC}} = (1 - p) \times t_{\text{CPU}} + t_{\text{GPU}} \left[1 + \max \left(0, \frac{N_{\text{CPU}}}{N_{\text{GPU}}} - \frac{t_{\text{ideal}}}{t_{\text{GPU}}} \right) \right] + t_{\text{latency}}$$

GPU saturates

2.7x speed up of the fullProtoDUNE-SP processing chain1 GPU can handle 68 CPUprocesses simultaneously

SONIC: latest explorations

GPU-as-a-service

https://arxiv.org/abs/2007.10359

Hardware platforms

GPU-as-a-service for DUNE

https://arxiv.org/pdf/2009.04509.pdf

Algorithm
complexity

More benchmarks driven by use cases to test scaling for HLT/offline

Algorithm complexity... at the LHC

FACILE

DeepCalo*

ResNet

CMS Hadronic Calorimeter channel regression

ECAL cluster regression

top quark image classification

2k parameters

10 M parameters

Single GPU server inference speedup 21

FACILE

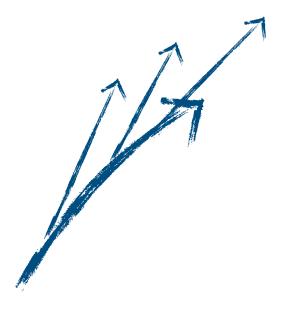
DeepCalo*

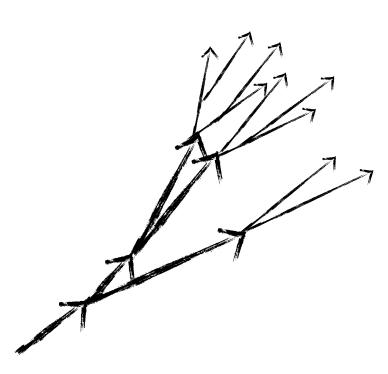
ResNet

HCAL channel regression

ECAL cluster regression

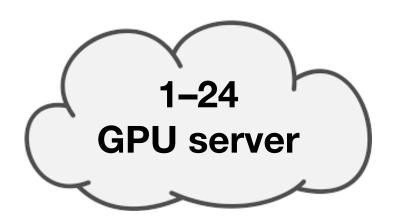
top quark image classification

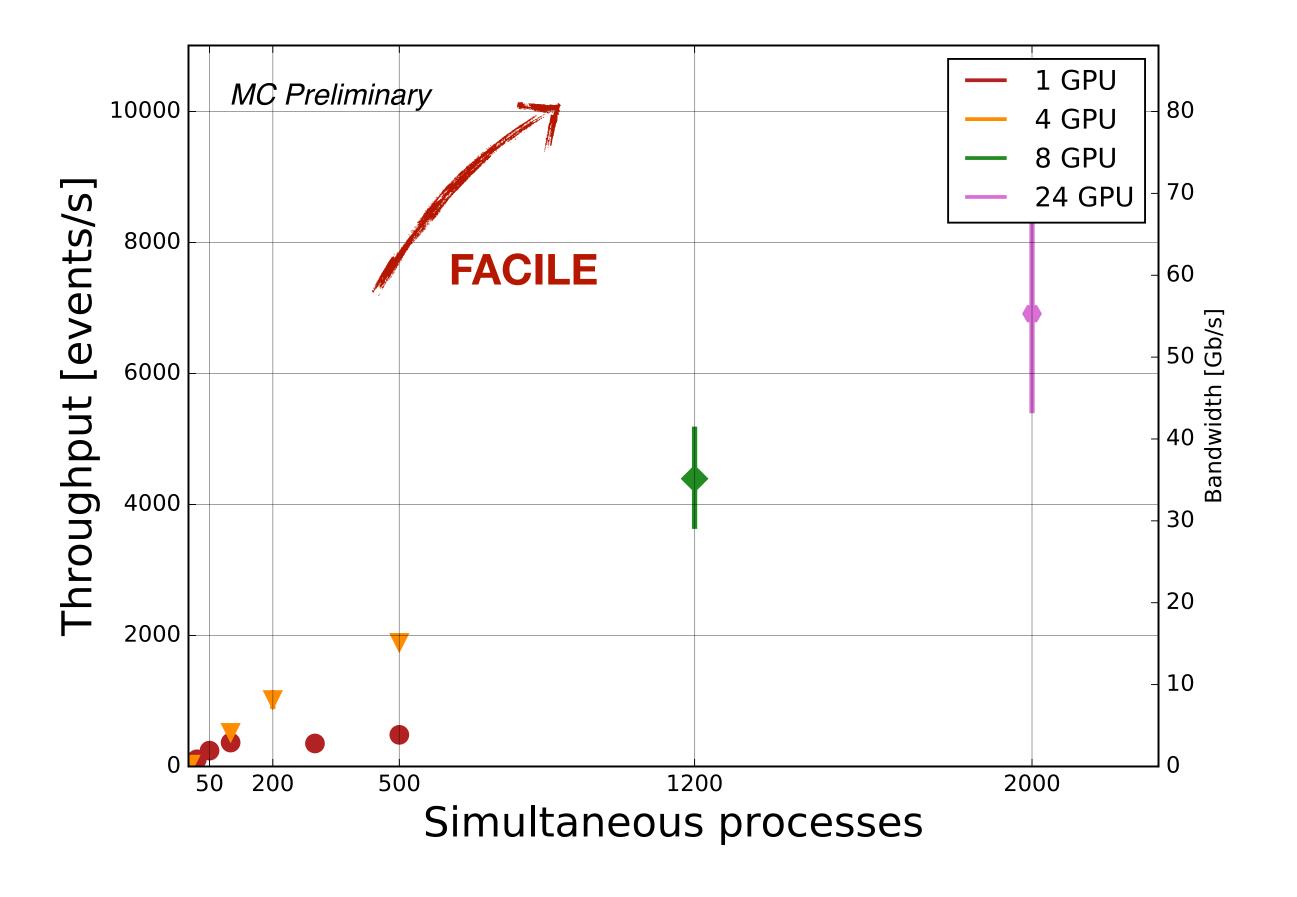




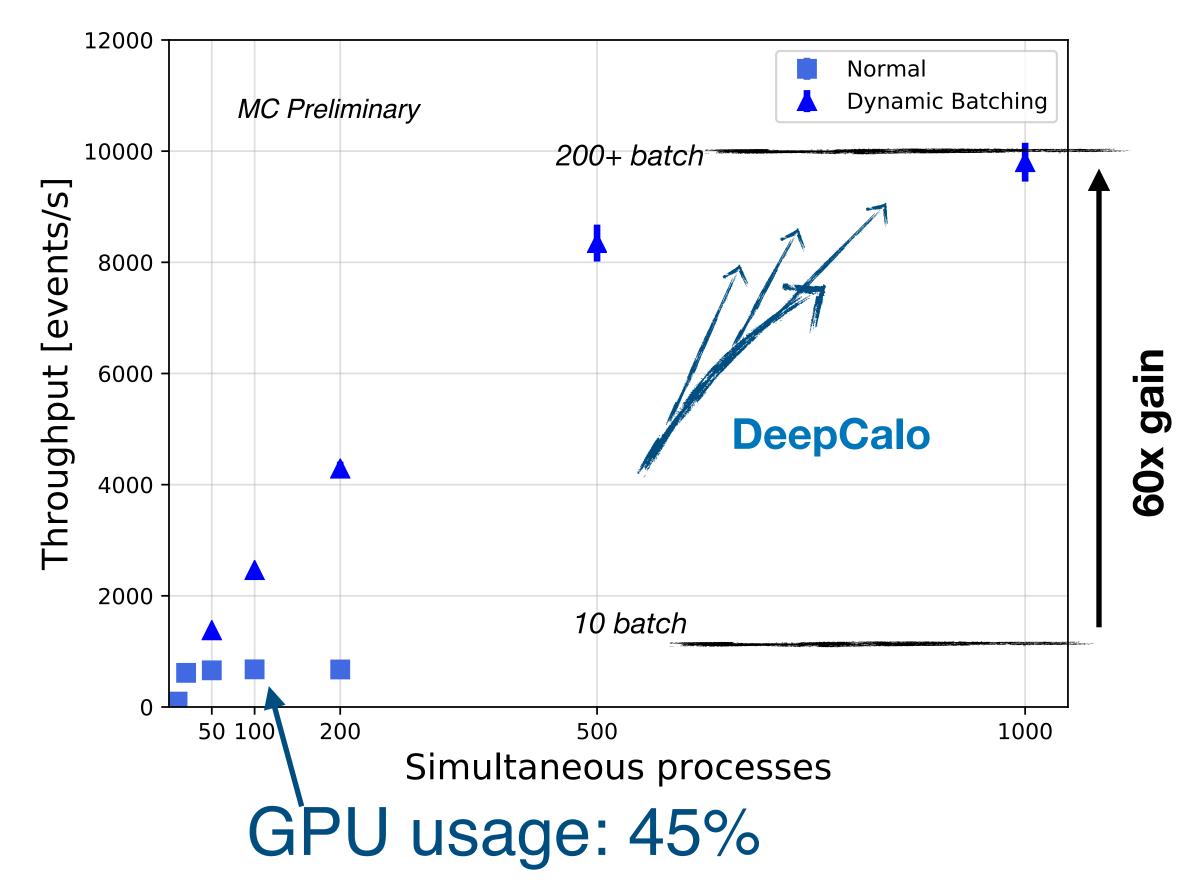
CPU	16 ms	75 ms	~1 s*
GPU as-a- service	2 ms (GPU)	0.1 ms	1-2 ms (GPU/FPGA)
Gain	8x (GPU)	750x	500x

GPU scaling and Dynamic batching

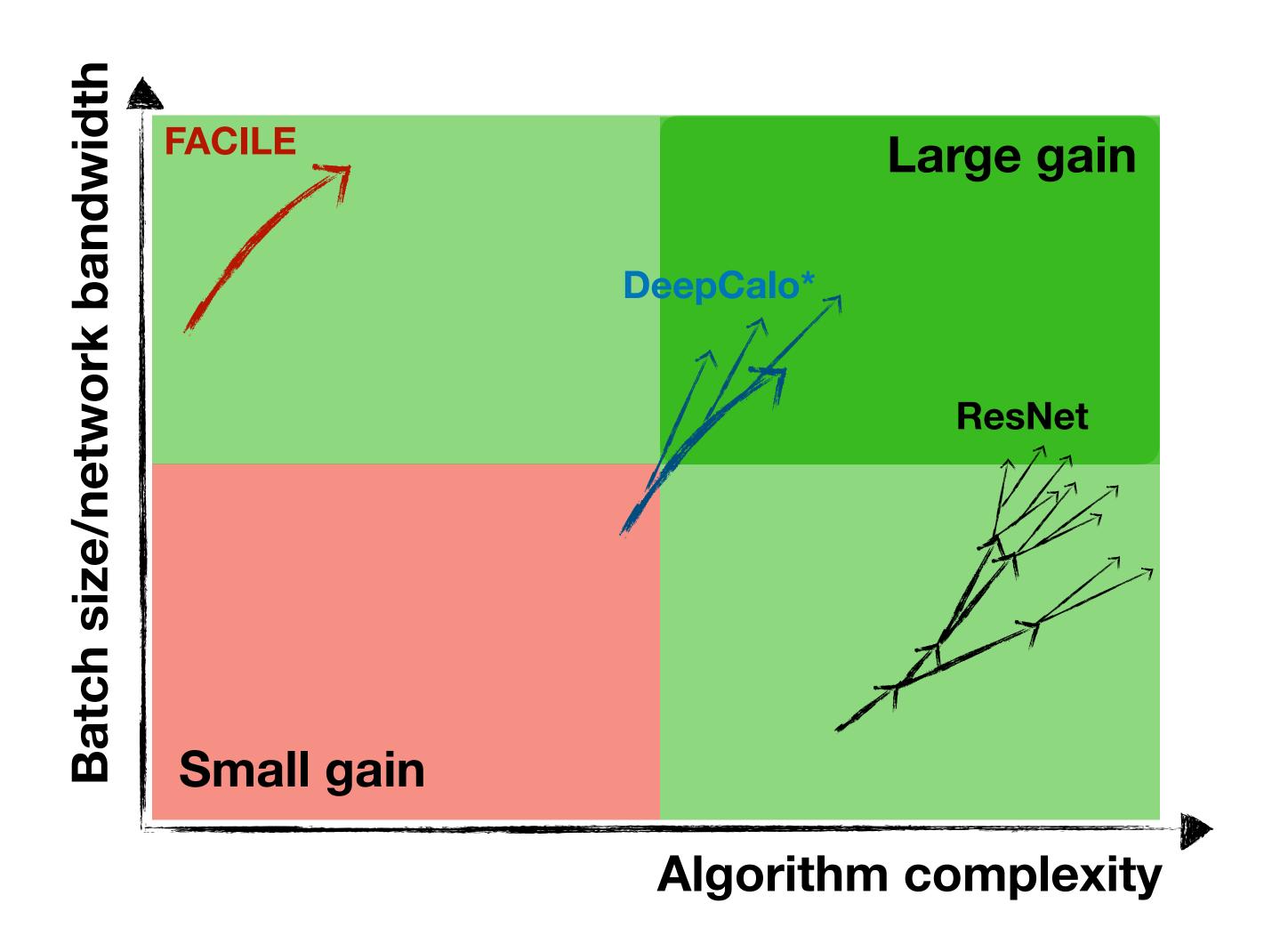




Significant gain from dynamic batching



Where do we gain?



hls

SONIC: latest explorations

FPGA-as-a-service Toolkit

GPU-as-a-service

https://arxiv.org/abs/2007.10359

GPU-as-a-service for DUNE

https://arxiv.org/pdf/2009.04509.pdf

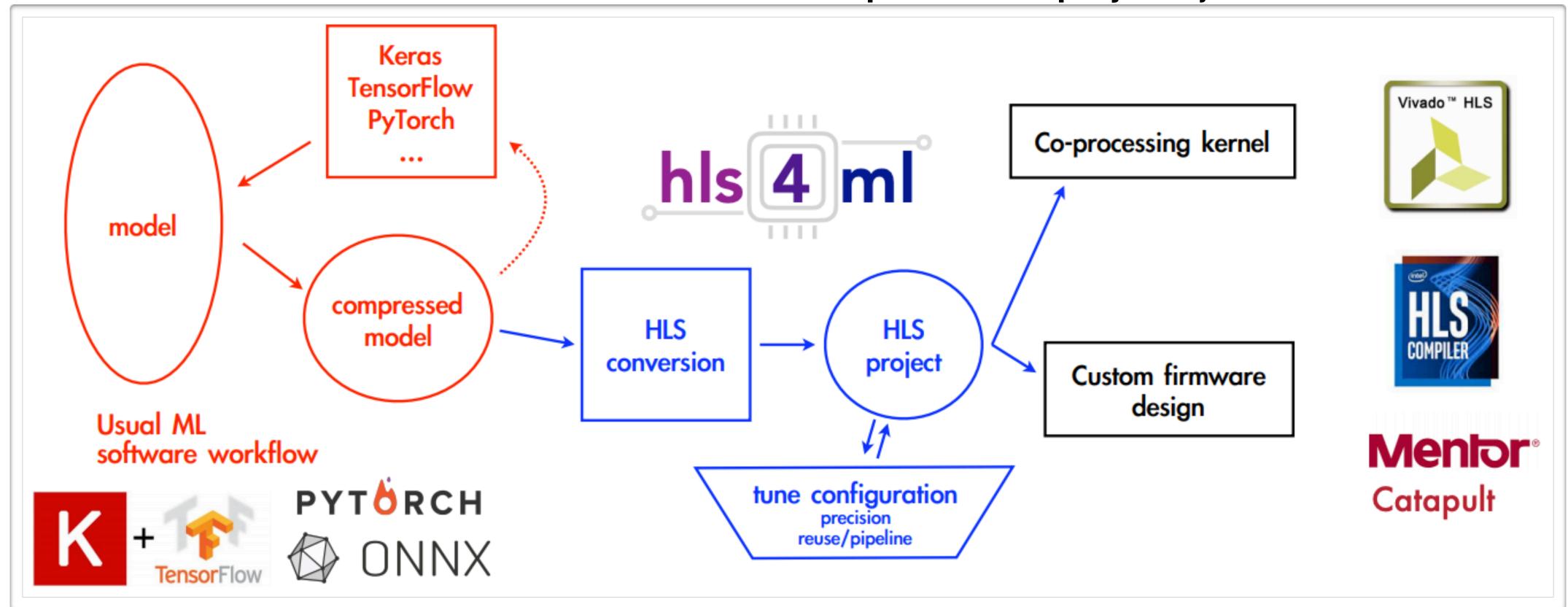
Hardware platforms Open source tools: flexibility

Algorithm
complexity

More benchmarks driven by use cases to test scaling for HLT/offline

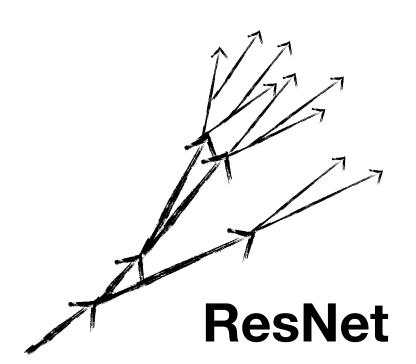
hls4ml: accelerating ML on hardware fastmachinelearning.org/hls4ml

An open source project - join the conversation!



Originally designed for LHC triggers applications but broad and growing user base

FPGAs-as-a-Service Toolkit (FaaST)



Algorithm	Platform	Number of Devices	Batch Size	Inf./s [Hz]	Bandwidth [Gbps]
FACILE	AWS EC2 F1	1	16,000	36 M	23
FACILE	Alveo U250	1	16,000	86 M	55
FACILE	T4 GPU	1	16,000	8 M	5.1
ResNet-50	AWS EC2 F1	8	10	1400	6.7
ResNet-50	V100 GPU	8	10	1,700	8.1
ResNet-50	ASE	1	1	460	2.2
ResNet-50	T4 GPU	1	10	250	1.2

Xilinx Machine Learning Suite

FPGA-as-a-service Toolkit

Future prospects

Integration in full scale production in experiments

: processing for full-scale protoDune-SP reconstruction, FACILE@HLT in CMS...scaling with multiple models.

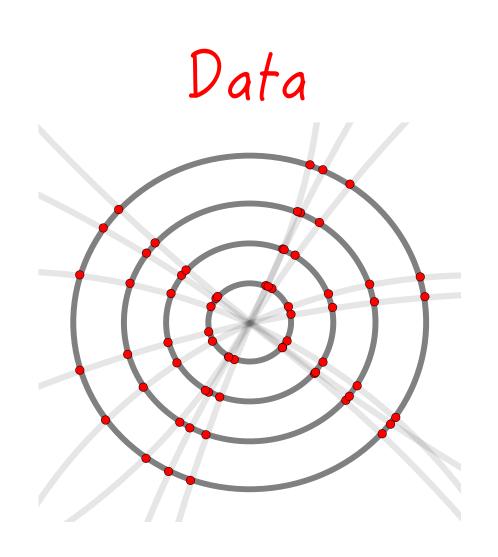
Al algorithms suitable for physics data/with domain knowledge embedded

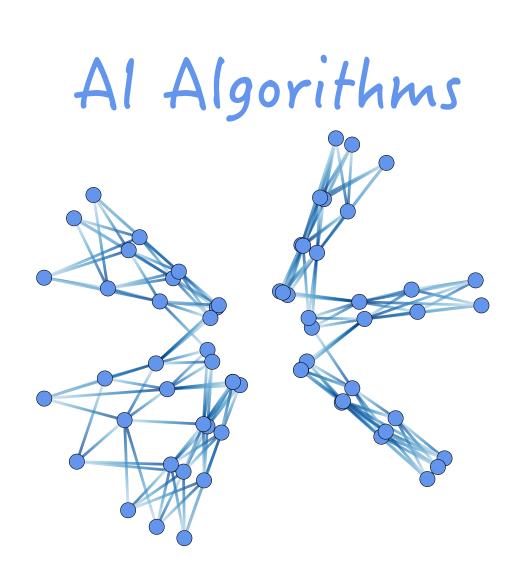
Graph neural networks, Energy flow networks, see Nhan's talk.

e.g. Brainwave studies explore re-training with quantized version to achieve the best performance in precision.

Most studies performed using Cloud services/on-premises clusters **SONIC** in High Performance Computers (HPCs)

: accelerate ML-based simulation/reconstruction etc...





28

SONIC: Not limited to ML

Given a heterogenous computing hardware:

re-write physics algorithms for new hardware

Language: OpenCL, OpenMP,TBB, HLS, ...? Hardware: FPGA, GPU

Parallelized and Vectorized Tracking Using Kalman Filters

• e.g.On GPUs

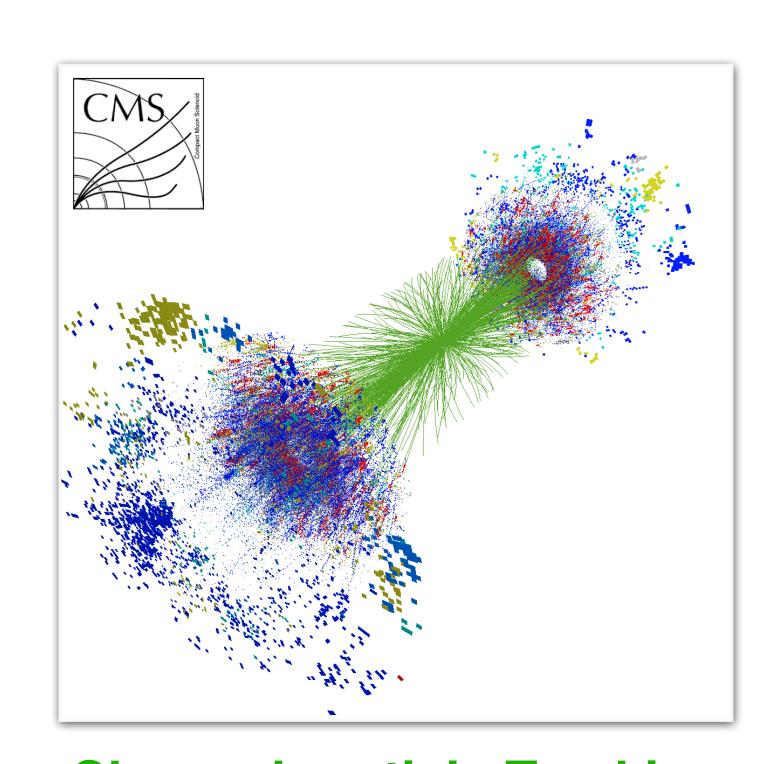
re-cast physics problem as a machine learning problem

Language: C++, Python (TensorFlow, PyTorch,...)

Hardware: FPGA, GPU, ASIC

Tracking with ML

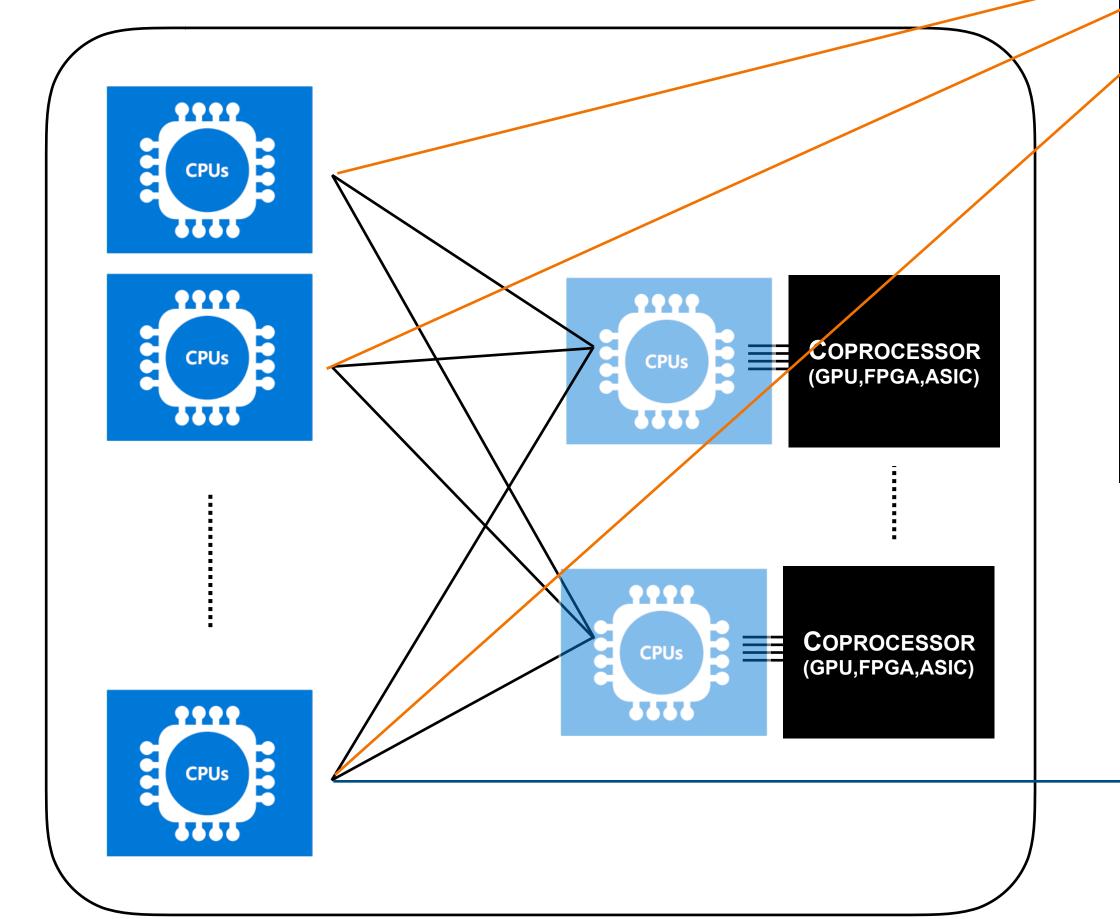
- Algorithms parallelizable
- Solutions with ML e.g., HEP.TrkX.

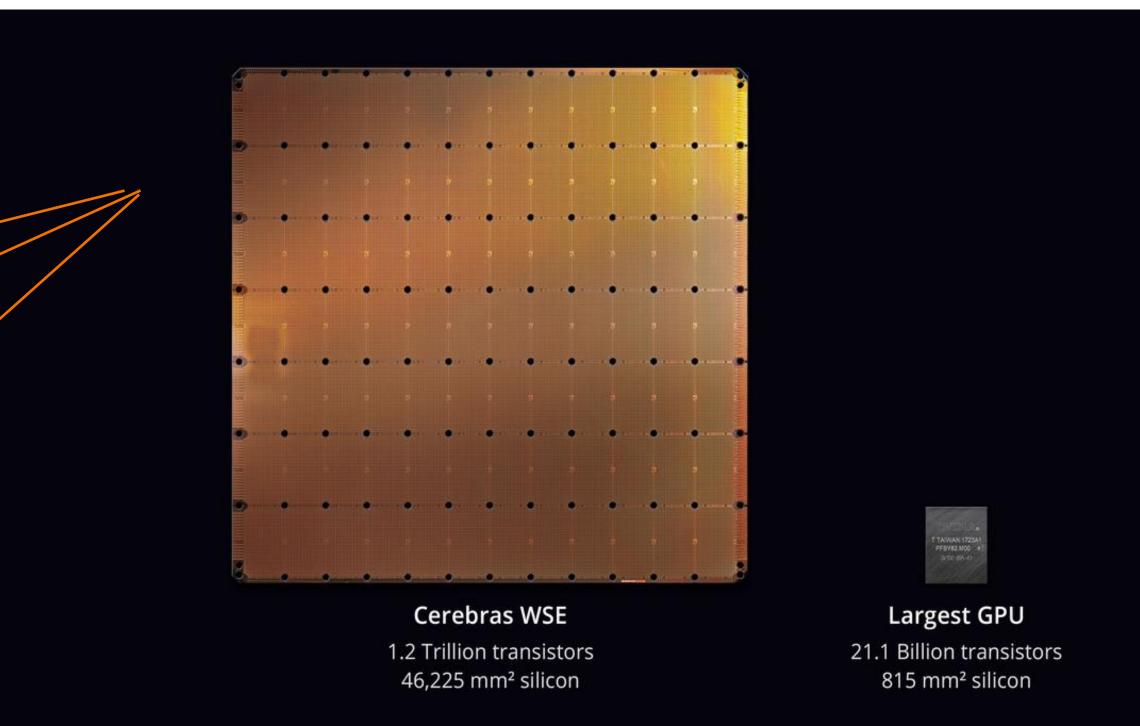


Charged particle Tracking With graph neural networks

The now/future computing paradigm?

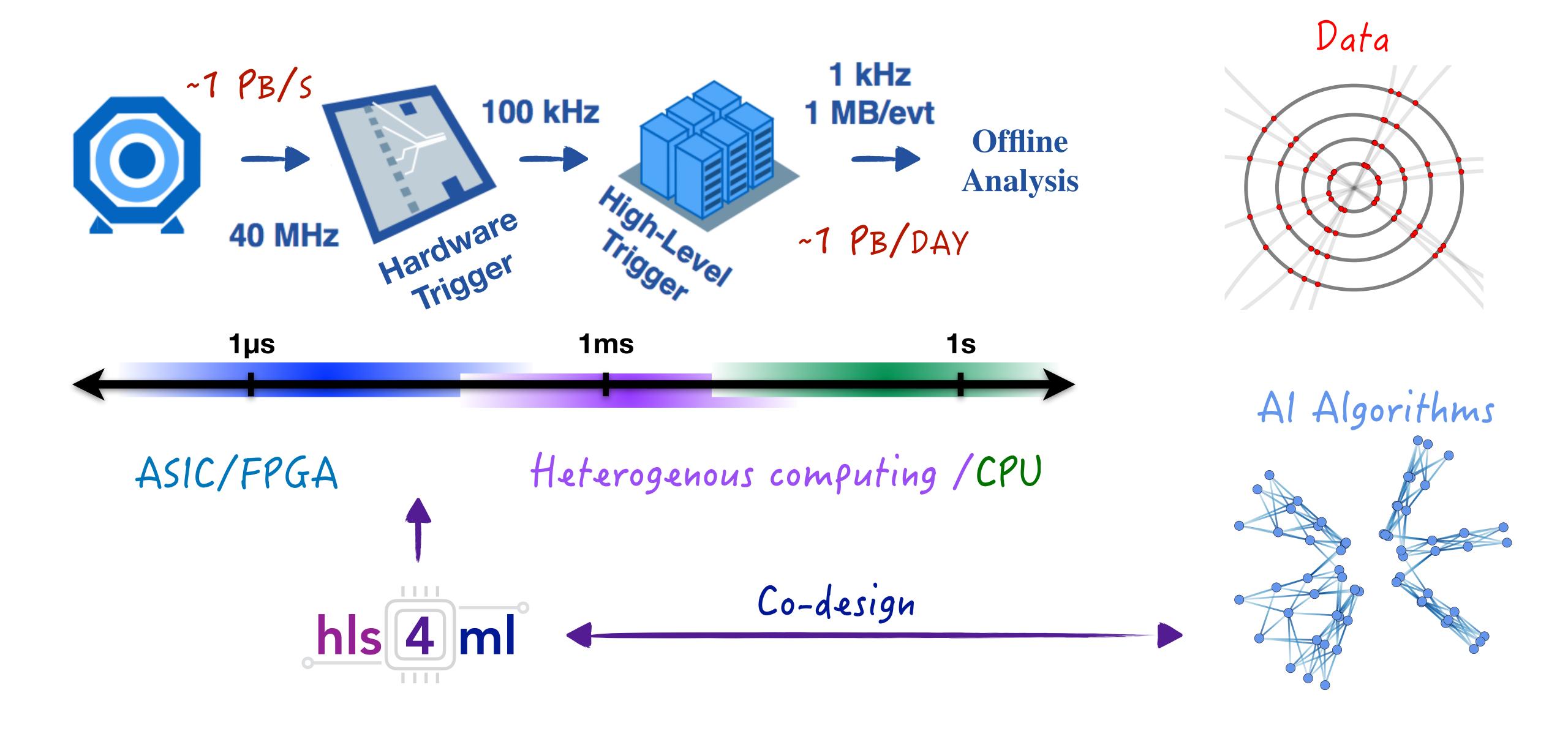
Heterogeneous computing as-a-service





Emerging technologies...

Accelerated discoveries with Real-Time Al



Throughput

