
The GosipGUI framework for control and benchmarking of readout electronics front-ends

Jörn Adamczewski-Musch, Experiment Electronics department, GSI, Darmstadt, Germany

22nd Virtual IEEE Real Time Conference, 12-23 October 2020 on ZOOM

The GOSIP (Gigabit Optical Serial Interface Protocol) [1]

provides communication via optical fibers between multiple
kinds of frontend electronics and the KINPEX PCIe receiver
board located in the readout host PC. In recent years a stack
of device driver software has been developed to utilize this
hardware for several scenarios of data acquisition [2]. On top
of this driver foundation, several graphical user interfaces
(GUIs) have been developed in previous years. These GUIs
are based on the Qt graphics libraries and are designed in a
modular way: All common functionalities, like generic I/O
with the front-ends, handling of configuration files, and
window settings, are treated by a framework class GosipGUI.
In the Qt workspace of such GosipGUI frame, specific
subclasses may implement additional windows dedicated to
operate different GOSIP front-end modules. These readout
modules developed by GSI Experiment Electronics
department are for instance FEBEX sampling ADCs, TAMEX
FPGA-TDCs, or POLAND QFWs [3]. For each kind of front-end
the GUIs allow to monitor specific register contents, to set up
the working configuration, and to interactively change
parameters like sampling thresholds during data acquisition.
The latter is extremely useful when qualifying and tuning the
front-ends in the electronics lab or detector cave. Moreover,
some of these GosipGUI implementations have been
equipped with features for mostly automatic testing of ASICs
in a prototype mass production. This has been applied for the
APFEL-ASIC component [4] of the PANDA experiment
currently under construction, and for the FAIR beam
diagnostic readout system POLAND. The GosipGUI framework
is available under GPL at [5].

Abstract

mailto: j.adamczewski@gsi.de

GosipGui virtual methods (to be re-implemented in subclass):

GosipSetup* CreateSetup()

- factory method for the setup object

RefreshView ()

- update gui display from status structure

EvaluateView ()

- put gui values into status structuré

GetRegisters ()

- get register contents from hardware to status structure

SetRegisters ()

- set register contents from status structure to hardware

SaveRegisters()

- get registers and write them to config file

ResetSlave()

- reset or initialize the GOSIP slave device

DumpSlave()

- printout some device registers to terminal window

SaveConfig()

- save current hardware configuration to a gosipcmd script file

ApplyFileConfig()

- apply configuration from gosipcmd file to the hardware.

Preprocessor macros (used in GosipGui subclass):

• theSetup_GET_FOR_SLAVE(X)

- cast GosipSetup to actual implementation X, provides handle

theSetup-> to access special member

• GOSIP_BROADCAST_ACTION(X)

- execute function X for the selected front-end; can optionally do

it in a “broadcast mode” for an SFP chain, or for all chains

• GOSIP_AUTOAPPLY(X)

- execute function X for selected front-end only if GUI is in

“auto-apply” mode. Used for interactive tuning of single

registers without writing complete setup to hardware

Framework interface

GosipGui:

• based on Qt5 environment, inherits QMainWindow, provides QWorkspace, uses

QSettings

• implements all common GUI elements:

o selector of currently controlled front-end

o controls operation mode (auto-apply, number display, terminal verbosity)

o buttons to set and retrieve all hardware registers, save and apply setup scripts

o embedded terminal for text dump

o status message line

• offers central workspace to operate specific widgets of subclass GUIs

• fully configurable dock window toolbars and menus

• save and restore window and toolbar geometry preferences

• implements generic GOSIP communication methods via device driver software

• keeps list of GosipSetup objects for each connected front-end slave

• factory pattern to create appropriate GosipSetup object in GosipGUI subclass

• virtual methods interface to use subclass functionalities with generic GUI elements

GosipSetup:

• interface for any kind of structure representing the register state of one GOSIP

slave

• virtual method Dump() for optional printout to terminal

Base class features

base classes

FEBEX

APFEL

POLAND

c
la

s
s
e
s

o
b

je
c
ts

frontend hardware

status object
GUI display

GUI

slots, methods

GOSIP IO

Refresh()

EvaluateView()

signal

CONTROLLER

MODEL

VIEW

GosipGUI archtecture

Application examples

POLAND: 32 channel charge frequency converters

for FAIR beam diagnostic SEM grid system

sample of channel traces QFW parameters

temperature monitor,

fans control

DAC offset pattern

Characterization of APFEL preamplifier ASIC for PANDA experiment

automatic characterization sequence

channel ADC sample,

pulser peak finder
external current measurements

carrier board set up

test pulser

output gain

• used for commisioning of APFEL ASIC

• carrier board with 8 sockets for APFEL

rigid flex PCBs

• control via FEBEX front-end

• sample DAQ with MBS system

• APFEL chip id from QR code scanned

by human operator

• sequencer runs all required tests

• figures of merit are stored to a database

• already 8000 APFEL PCBs for PANDA

EMC-Barrrel processed since 2017

*APFEL (ASIC for Panda Front-end

ELectronics): integrated charge

sensitive preamplifier and shaper

optimized for the readout of avalanche

photo diodes with large detector

capacitance and high event rates.

FEBEX 16 channel-pipelining ADCs

self trigger filters

thresholds
baselines

Common GUI frame

device selector

output terminalworking mode

conrol

generic toolbar

custom

workspace

specific

widget

windows

Refresh

Apply

Load config

Save config

Dump

Init

menubar

Device driver software

Linux Kernel

DMA memory
mbspex.ko

PCIe layer

libmbspex

gosipcmd

file system /dev/pexor0

DAQ
software

GosipGUI

library

gosipcmd –z

command

kernel module
data

X86 PC

PEXOR DMA

4 SFP

chains,

< 255 slaves

each

PEXOR/KINPEX optical receiver, x4 PCIe Gen2

1. S. Minami, J. Hoffmann, N. Kurz, and W. Ott, “Design and Implementation

of a Data Transfer Protocol via Optical Fibre” (PDAQ-31), presented at the

17th IEEE-NPSS RT2010, Lisbon, Portugal, May 24-28, 2010

2. J. Adamczewski-Musch, N. Kurz, and S. Linev, “MBSPEX and PEXORNET

- Linux Device Drivers for PCIe Optical Receiver DAQ and Control”, IEEE

Trans. on Nucl. Science, vol. 65 , issue: 2 , Feb. 2018,

https://doi.org/10.1109/TNS.2017.2783043

3. S. Löchner, J. Adamczewski-Musch, H. Bräuning, J. Frühauf, N. Kurz, S.

Linev, S. Minami, and M. Witthaus, “POLAND - Low Current Profile

Measurement Readout System”, GSI Darmstadt, Germany, Sci. Rep.

[Online]. 2013. http://dx.doi.org/10.15120/GR-2014-1 (FG-CS-13)

4. P. Wieczorek, S. Löchner, and J. Adamczewski-Musch, “First setup for the

routine tests of the APFEL-ASIC rigid flex PCBs”, GSI Darmstadt,

Germany, Sci. Rep. RESEARCH-PANDA-HAD-6, [Online]. 2017. Available:

http://dx.doi.org/10.15120/GSI-2017-01856

5. J. Adamczewski-Musch, GosipGUI framework,

https://subversion.gsi.de/dabc/drivers/mbspex/gui/qt-mainwindow/

References

[]

[]

[]

[]

[]

https://www.gsi.de/fileadmin/EE/Module/PEXOR/pexor3_app.pdf
https://doi.org/10.1109/TNS.2017.2783043
http://dx.doi.org/10.15120/GR-2014-1
http://dx.doi.org/10.15120/GSI-2017-01856
https://subversion.gsi.de/dabc/drivers/mbspex/gui/qt-mainwindow/
mailto:j.adamczewski@gsi.de
https://doi.org/10.1109/TNS.2017.2783043
http://dx.doi.org/10.15120/GR-2014-1
http://dx.doi.org/10.15120/GSI-2017-01856
https://subversion.gsi.de/dabc/drivers/mbspex/gui/qt-mainwindow/

