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Outline
● Use of machine learning (ML) in real-time applications
● Need for real-time friendly way to deploy ML models
● Keras2c basics
● Model parsing and supported features
● C backend
● Automated testing
● Benchmarks
● Real-time application: Plasma Control System on DIII-D Tokamak
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Real-time applications of machine learning
● Accelerating first-principles based analysis with data driven model:

○ Boyer et al 2019 Real-time capable modeling of neutral beam injection on NSTX-U using 
neural networks

○ Van De Plassche et al 2020 Fast modeling of turbulent transport in fusion plasmas using 
neural networks

○ Felici et al 2018 Real-time-capable prediction of temperature and density profiles in a tokamak 
using RAPTOR and a first-principle-based transport model

● Purely data driven approach where first-principles are lacking:
○ Kates-harbeck et al 2019 Predicting disruptive instabilities in controlled fusion plasmas 

through deep learning
○ Fu et al 2020 Machine learning control for disruption and tearing mode avoidance

● Combined first-principles & data to learn control:
○ Chung et al 2020 Offline Contextual Bayesian Optimization for Nuclear Fusion
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Deploying machine learning models
● Current method for deploying 

ML models based around 
mobile + web applications

○ Amazon SageMaker
○ Oracle GraphPipe
○ Open Neural Network Exchange

● Generally involve 
communicating with process 
running on remote server

○ Large latency 
○ Non-deterministic behavior
○ Not safe for real-time 

applications
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Deploying machine learning models

● Other options designed for mobile & embedded systems:
■ Tensorflow Lite
■ PyTorch TorchScript

○ Limited in what model types they support
○ Often still requires calls to secondary processes

■ Non-deterministic behavior
● TensorFlow C/C++ API

○ Extremely labor intensive to recode entire model by hand
○ Requires large external libraries (~millions SLOC)
○ Generally not safe for real-time
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Script/Library for converting Keras 
neural nets to C functions

● Designed for simplicity and real 
time applications

● Core functionality only ~1500 lines

● Generates self-contained C 
function, no external dependencies

● Supports full range of operations & 
architectures

● Fully automated conversion & 
testing
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Why                  ?
● High level API built on TensorFlow

○ “Deep learning for humans”
○ User friendly, easy to learn
○ Fast development and training
○ Full feature set for complicated models
○ Most used framework among winning teams on ML competition site Kaggle
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Keras2c: neural net is just another function
● Keras API built around “layer” object

○ Each layer transforms input data via standard mathematical functions
■ Dot products, convolutions, sigmoid activation etc

○ Model is built by stacking layers together
○ Not always sequential: can also contain branching & merging layers

● Keras2c follows similar approach
○ Each Keras layer implemented as C function
○ “Model” is just a wrapper function that calls layer functions in the right order with the correct 

inputs

nn_predictor(k2c_tensor * inputs, k2c_tensor * outputs);

8



Weights and model parameters automatically parsed
● Python script parses each layer to extract weights and other parameters

○ Eg convolution strides, activation function type

● Generates C code for variables, allocating to either stack or heap
● keras.tensor → k2c_tensor custom NDarray type

struct k2c_tensor{
float *array;
size_t ndim;
size_t numel;
size_t shape[K2C_MAX_NDIM];
}
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Supports complex model architectures
● Keras model consists of layers composed into directed acyclic graph
● Topological sorting algorithm used to flatten graph to linear sequence
● Can handle arbitrarily complicated model structures

○ Recurrent connections
○ Bidirectional / Time distributed layers
○ Shared layers

● Generates C code 
to call layer functions 
in correct order
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C backend supports full range of Keras options
● Each Keras layer 

implemented as pure C 
function

● Only ~1500 lines
● Supports nearly all 

Keras layers and options
● Relies only on C 

standard library

Core Dense, Reshape, Flatten, Permute, RepeatVector, BatchNormalization, 
Embedding

Convolution Convolution(1D/2D/3D,with arbitrary stride, dilation, 
padding),Cropping(1D/2D/3D), UpSampling (1D/2D/3D), ZeroPadding 
(1D/2D/3D)

Pooling MaxPooling(1D/2D),AveragePooling(1D/2D), GlobalMaxPooling 
(1D/2D/3D),GlobalAveragePooling (1D/2D/3D)

Recurrent SimpleRNN, GRU, LSTM (statefull or stateless)

Merge Add, Subtract, Multiply, Average, Maximum,Minimum, Concatenate, Dot

Wrappers TimeDistributed, Bidirectional

Activation ReLU, tanh, sigmoid, hard sigmoid, exponential,softplus, softmax, 
softsign, LeakyReLU, PReLU,ELU, ThresholdedReLU
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Automated testing & Extensibility
● During conversion, random inputs 

are generated and fed through Keras 
model

● Input/output pairs saved and used to 
generate C test function

● Test function calls C version of the 
model with generated inputs and 
compares outputs to expected values

● Automatically verifies that results 
match to within user specified 
tolerance

● Backend can be easily modified to 
wrap standard linear algebra libraries 
such as BLAS, LAPACK, MKL etc

● Can also be extended to support 
custom layer types not included in 
Keras

○ Only requires definition of the C 
function, and Python method for 
parsing
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Conversion only requires single command
● From within Python:

from keras2c import k2c
k2c(my_model, "my_converted_model" )

● From command line:
python -m keras2c model_path “my_converted_model” 

● No other user input required

● Generates 3 files:
○ my_converted_model.c → source for NN function
○ my_converted_model.h → header file with declarations
○ my_converted_model_test_suite.c → automated testing to ensure accuracy

● Source / header file can then be used in existing codebase to call neural net function

my_converted_model(k2c_tensor * inputs, k2c_tensor * outputs);
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Comparable speed to 
optimized TensorFlow

● Backend not currently optimized for speed, 
yet still outperforms highly optimized 
TensorFlow backend for many model 
types

● Dense/Fully Connected and Recurrent 
models outperform TensorFlow up to 1 
million parameters

● Convolutional models outperform 
TensorFlow up to 5000 parameters
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Safe for real-time systems
● All backend and generated code designed to be deterministic and thread-safe

● Non-deterministic function calls (memory allocation, etc) are segmented into 
dedicated initialization and cleanup routines to be run before and after the 
real-time portion

● All functions re-entrant, with explicit inputs and outputs and no use of mutable 
global variables

● Allows multiple calls to functions from different threads safely
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Real-time applications: DIII-D Plasma Control
● Tested extensively on the Plasma 

Control System (PCS) at DIII-D 
tokamak at the National Fusion Facility 
operated by General Atomics in San 
Diego 

● PCS: software framework running on 
GNU/Linux real-time computers connected 
via an InfiniBand QDR interface

● Operates on microsecond timescales
○ Acquiring data from sensors and 

diagnostics
○ Calculates monitoring and feedback 

algorithms
○ Output control commands to actuators 

on the tokamak device

● In total, PCS runs approximately 50 different 
algorithms on varying periodics

● Currently 3 algorithms use Keras2c 
framework to analyze and control the 
plasma state:

○ Predicting plasma disruptions (FRNN)
○ Predicting & controlling neoclassical 

tearing instabilities (MLDA)
○ Predicting & controlling plasma 

transport (ETEMP)
● Other algorithms in development will use 

Keras2c for controlling plasma divertor and 
pedestal
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Real-time applications: DIII-D Plasma Control
● Example timing shown for neural net 

predicting plasma transport
○ 30 convolutional layers of varying size
○ 2 recurrent LSTM layers
○ Dozens of reshaping/padding/merging 

operations
○ Multi-input/multi-output model with 

branching internal structure
○ Total 45,485 parameters

● Mean time 1.65 ms*
● Worst case jitter 23 μs, rms 3.75 μs

*Also includes time to gather input data from 
other processes and pre-processing
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Summary
● Existing approaches for deploying machine learning models not feasible for low latency, 

deterministic real-time applications
● Keras2c generates self contained C code, can be easily included in existing systems
● Supports complex model architecture and full range of Keras functionality
● Conversion is fully automated and tests verify accuracy
● Tested for real-time use on DIII-D Plasma Control System
● Fully open source, contributions and improvements welcome

○ https://github.com/f0uriest/keras2c
○ https://f0uriest.github.io/keras2c/

● Publication in review at Engineering Applications of Artificial Intelligence

Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using 
the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, 
DE-SC0015878, DE-AR0001166,and Field Work Proposal No. 1903
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