
Keras2c
A library for converting Keras neural networks to real-time compatible C

Rory Conlin1, Keith Erickson2, Joseph Abbate3, Egemen Kolemen1,2

1 Department of Mechanical and Aerospace Engineering, Princeton University
2 Princeton Plasma Physics Laboratory

3 Department of Astrophysical Sciences at Princeton University

1

Outline
● Use of machine learning (ML) in real-time applications
● Need for real-time friendly way to deploy ML models
● Keras2c basics
● Model parsing and supported features
● C backend
● Automated testing
● Benchmarks
● Real-time application: Plasma Control System on DIII-D Tokamak

2

Real-time applications of machine learning
● Accelerating first-principles based analysis with data driven model:

○ Boyer et al 2019 Real-time capable modeling of neutral beam injection on NSTX-U using
neural networks

○ Van De Plassche et al 2020 Fast modeling of turbulent transport in fusion plasmas using
neural networks

○ Felici et al 2018 Real-time-capable prediction of temperature and density profiles in a tokamak
using RAPTOR and a first-principle-based transport model

● Purely data driven approach where first-principles are lacking:
○ Kates-harbeck et al 2019 Predicting disruptive instabilities in controlled fusion plasmas

through deep learning
○ Fu et al 2020 Machine learning control for disruption and tearing mode avoidance

● Combined first-principles & data to learn control:
○ Chung et al 2020 Offline Contextual Bayesian Optimization for Nuclear Fusion

3

Deploying machine learning models
● Current method for deploying

ML models based around
mobile + web applications

○ Amazon SageMaker
○ Oracle GraphPipe
○ Open Neural Network Exchange

● Generally involve
communicating with process
running on remote server

○ Large latency
○ Non-deterministic behavior
○ Not safe for real-time

applications
4

Deploying machine learning models

● Other options designed for mobile & embedded systems:
■ Tensorflow Lite
■ PyTorch TorchScript

○ Limited in what model types they support
○ Often still requires calls to secondary processes

■ Non-deterministic behavior
● TensorFlow C/C++ API

○ Extremely labor intensive to recode entire model by hand
○ Requires large external libraries (~millions SLOC)
○ Generally not safe for real-time

5

Script/Library for converting Keras
neural nets to C functions

● Designed for simplicity and real
time applications

● Core functionality only ~1500 lines

● Generates self-contained C
function, no external dependencies

● Supports full range of operations &
architectures

● Fully automated conversion &
testing

6

Keras2c: fully automated conversion / code generation

Why ?
● High level API built on TensorFlow

○ “Deep learning for humans”
○ User friendly, easy to learn
○ Fast development and training
○ Full feature set for complicated models
○ Most used framework among winning teams on ML competition site Kaggle

7

Keras2c: neural net is just another function
● Keras API built around “layer” object

○ Each layer transforms input data via standard mathematical functions
■ Dot products, convolutions, sigmoid activation etc

○ Model is built by stacking layers together
○ Not always sequential: can also contain branching & merging layers

● Keras2c follows similar approach
○ Each Keras layer implemented as C function
○ “Model” is just a wrapper function that calls layer functions in the right order with the correct

inputs

nn_predictor(k2c_tensor * inputs, k2c_tensor * outputs);

8

Weights and model parameters automatically parsed
● Python script parses each layer to extract weights and other parameters

○ Eg convolution strides, activation function type

● Generates C code for variables, allocating to either stack or heap
● keras.tensor → k2c_tensor custom NDarray type

struct k2c_tensor{
float *array;
size_t ndim;
size_t numel;
size_t shape[K2C_MAX_NDIM];
}

9

Supports complex model architectures
● Keras model consists of layers composed into directed acyclic graph
● Topological sorting algorithm used to flatten graph to linear sequence
● Can handle arbitrarily complicated model structures

○ Recurrent connections
○ Bidirectional / Time distributed layers
○ Shared layers

● Generates C code
to call layer functions
in correct order

10

C backend supports full range of Keras options
● Each Keras layer

implemented as pure C
function

● Only ~1500 lines
● Supports nearly all

Keras layers and options
● Relies only on C

standard library

Core Dense, Reshape, Flatten, Permute, RepeatVector, BatchNormalization,
Embedding

Convolution Convolution(1D/2D/3D,with arbitrary stride, dilation,
padding),Cropping(1D/2D/3D), UpSampling (1D/2D/3D), ZeroPadding
(1D/2D/3D)

Pooling MaxPooling(1D/2D),AveragePooling(1D/2D), GlobalMaxPooling
(1D/2D/3D),GlobalAveragePooling (1D/2D/3D)

Recurrent SimpleRNN, GRU, LSTM (statefull or stateless)

Merge Add, Subtract, Multiply, Average, Maximum,Minimum, Concatenate, Dot

Wrappers TimeDistributed, Bidirectional

Activation ReLU, tanh, sigmoid, hard sigmoid, exponential,softplus, softmax,
softsign, LeakyReLU, PReLU,ELU, ThresholdedReLU

11

Automated testing & Extensibility
● During conversion, random inputs

are generated and fed through Keras
model

● Input/output pairs saved and used to
generate C test function

● Test function calls C version of the
model with generated inputs and
compares outputs to expected values

● Automatically verifies that results
match to within user specified
tolerance

● Backend can be easily modified to
wrap standard linear algebra libraries
such as BLAS, LAPACK, MKL etc

● Can also be extended to support
custom layer types not included in
Keras

○ Only requires definition of the C
function, and Python method for
parsing

12

Conversion only requires single command
● From within Python:

from keras2c import k2c
k2c(my_model, "my_converted_model")

● From command line:
python -m keras2c model_path “my_converted_model”

● No other user input required

● Generates 3 files:
○ my_converted_model.c → source for NN function
○ my_converted_model.h → header file with declarations
○ my_converted_model_test_suite.c → automated testing to ensure accuracy

● Source / header file can then be used in existing codebase to call neural net function

my_converted_model(k2c_tensor * inputs, k2c_tensor * outputs);
13

Comparable speed to
optimized TensorFlow

● Backend not currently optimized for speed,
yet still outperforms highly optimized
TensorFlow backend for many model
types

● Dense/Fully Connected and Recurrent
models outperform TensorFlow up to 1
million parameters

● Convolutional models outperform
TensorFlow up to 5000 parameters

14

Safe for real-time systems
● All backend and generated code designed to be deterministic and thread-safe

● Non-deterministic function calls (memory allocation, etc) are segmented into
dedicated initialization and cleanup routines to be run before and after the
real-time portion

● All functions re-entrant, with explicit inputs and outputs and no use of mutable
global variables

● Allows multiple calls to functions from different threads safely

15

Real-time applications: DIII-D Plasma Control
● Tested extensively on the Plasma

Control System (PCS) at DIII-D
tokamak at the National Fusion Facility
operated by General Atomics in San
Diego

● PCS: software framework running on
GNU/Linux real-time computers connected
via an InfiniBand QDR interface

● Operates on microsecond timescales
○ Acquiring data from sensors and

diagnostics
○ Calculates monitoring and feedback

algorithms
○ Output control commands to actuators

on the tokamak device

● In total, PCS runs approximately 50 different
algorithms on varying periodics

● Currently 3 algorithms use Keras2c
framework to analyze and control the
plasma state:

○ Predicting plasma disruptions (FRNN)
○ Predicting & controlling neoclassical

tearing instabilities (MLDA)
○ Predicting & controlling plasma

transport (ETEMP)
● Other algorithms in development will use

Keras2c for controlling plasma divertor and
pedestal

16

Real-time applications: DIII-D Plasma Control
● Example timing shown for neural net

predicting plasma transport
○ 30 convolutional layers of varying size
○ 2 recurrent LSTM layers
○ Dozens of reshaping/padding/merging

operations
○ Multi-input/multi-output model with

branching internal structure
○ Total 45,485 parameters

● Mean time 1.65 ms*
● Worst case jitter 23 μs, rms 3.75 μs

*Also includes time to gather input data from
other processes and pre-processing

17

Summary
● Existing approaches for deploying machine learning models not feasible for low latency,

deterministic real-time applications
● Keras2c generates self contained C code, can be easily included in existing systems
● Supports complex model architecture and full range of Keras functionality
● Conversion is fully automated and tests verify accuracy
● Tested for real-time use on DIII-D Plasma Control System
● Fully open source, contributions and improvements welcome

○ https://github.com/f0uriest/keras2c
○ https://f0uriest.github.io/keras2c/

● Publication in review at Engineering Applications of Artificial Intelligence

Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using
the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698,
DE-SC0015878, DE-AR0001166,and Field Work Proposal No. 1903

18

https://github.com/f0uriest/keras2c
https://f0uriest.github.io/keras2c/

References
● Abadi, M.et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. https://www.tensorflow.org/.
● Chollet, F.et al. Kerashttps://keras.io. 2015.
● Hunt, K. J., Sbarbaro, D, ̇Zbikowski, R & Gawthrop, P. J. Neural networks for control systems—a survey. Automatica 28,1083–1112 (1992).
● Jin, L., Li, S., Yu, J. & He, J. Robot manipulator control using neural networks: A survey. Neurocomputing 285,23–34 (2018).
● Liu, W.et al.A survey of deep neural network architectures and their applications. Neurocomputing 234,11–26 (2017).
● Abiodun, O. I.et al.State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).
● Amazon SageMaker https://aws.amazon.com/sagemaker/ (2020).
● Oracle GraphPipe https://oracle.github.io/graphpipe/ (2020).
● Bai, J., Lu, F., Zhang, K.,et al. ONNX: Open Neural Network Exchange https://github.com/onnx/onnx. 2019.
● Ferron, J. R., Penaflor, B., Walker, M. L., Moller, J. & Butner, D. Flexible software architecture for tokamak discharge control

systems.Proceedings -Symposium on Fusion Engineering 2,870–873 (1995).
● Hyatt, A. W.et al.Physics operations with the DIII-D plasma controlsystem.IEEE Transactions on Plasma Science38,434–440 (2010).
● Luxon, J. L. A design retrospective of the DIII-D tokamak.Nuclear Fusion42,614–633 (2002).11
● Kahn, A. B. Topological sorting of large networks.Communications of the ACM5,558–562 (1962).
● Abbate J., C. R. & Kolemen, E. Fully Data-Driven Profile Prediction for DIII-D.Nuclear Fusion (In Review).
● Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting disruptive in-stabilities in controlled fusion plasmas through deep learning.Nature

568,526–531 (2019).
● Fu, Y.et al.Machine learning control for disruption and tearing mode avoidance.Physics of Plasmas 27(2020).
● Kolemen, E.et al.Initial development of the DIII-D snowflake divertor control.Nuclear Fusion 58,066007 (2018).
● Laggner, F. et al.Real-time pedestal optimization and ELM control with 3D fields and gas flows on DIII-D.Nuclear Fusion 60,076004 (2020).
● Penaflor, B.et al.Extending the capabilities of the DIII-D Plasma Control System for worldwide fusion research collaborations.Fusion

engineering and design 84,1484–1487 (2009) 19

https://www.tensorflow.org/
https://keras.io
https://aws.amazon.com/sagemaker/(2020)
https://oracle.github.io/graphpipe/(2020)
https://github.com/onnx/onnx

