Data Transportation with ZeroMQ at the Belle II High Level Trigger

IEEE - Data Acquisition System Architectures

Markus T. Prim for the Belle II DAQ Group 10th October 2020

Universität Bonn - Physikalisches Institut

Belle II Experiment

- Accumulated approx. $74 \, \mathrm{fb}^{-1}$.
- SuperKEKB world record June 21st, 2020.
- Aiming for $50 \,\mathrm{ab^{-1}}$ in the next 10 years.

Belle II Data Acquisition System (DAQ)

Infrastructure and Environment

Design Parameters

- HLT has to reconstruct the full event and perform the trigger decision.
- Keep/discard detector data but always keep meta data.
- No dedicated "fast" reconstruction software, identical to offline software.
- Average time per event reconstruction is $0.3 0.5 \, \text{s}$.
- 20 kHz input rate, with peaks up to 30 kHz.
- Round-robin distribution to individual HLT nodes, load-balancing within individual HLT nodes among workers.
- Average event data size of 100 kB without PXD data.
- PXD readout buffer: 5 s (time until region-of-interest has to be provided).
- Data Quality Monitoring has to be available life during operations.

Infrastructure and Environment

General Setup

- $\mathcal{O}(20)$ independent HLT units, each containing 12-20 worker nodes.
- Each HLT unit comes with a single dedicated input, output, and storage and *n* worker nodes with fast local interconnection.
- Raw data w/o PXD data is streamed by the event builder via TCP connections to the HLT.
- Data in form of ROOT objects is streamed to PXD and Storage system.

Evolution of Data Transport on the HLT

- N. Braun, T. Kuhr, 2003.02552
- ullet Shared memory-based ring buffers decoupled from specific processes o non-trivial clean-up.
- The rigid structure did not allow for non-data communication, e.g. advanced control features and monitoring of the connections.
- Custom ring-buffers and TCP implementation are difficult to maintain.

Moving to ZMQ

Why ZMQ?

- To increase the maintainability, core components were built on top of the well maintained, open-source library, ZMQ.
- Industry-standard for high-performance broker-less asynchronous messaging in distributed applications.

Data Transport on the HLT with ZMQ

- Inter- and intra-node communication handled by ZMQ-based TCP connections.
- Buffering via TCP message queue (removing the need for error-prone ring-buffers).
- Allows to pass either event data or control messages, opening up the option for advanced features.
- Initialization and cleanup of connections done automatically.

Connection Types

Raw Connection

Standard TCP connection.

Load Balanced Connections

- Sender keeps list of ready receivers, receivers sends "Ready" message after each received message.
- Sender looks for incoming messages when at least one receiver is ready, until then messages are blocked (not dismissed).
- Sender transmits every message to exactly one receiver (except for stop/terminate).

Connection Types

Confirmed Connections

- Sender blocks until it receives "Accept" message (messages from sender to receiver are ensured or block).
- Receiver has list of all possible senders.
- Messages from receiver offline sender are dropped without notice.

Data Transportation Layout

If a worker process dies, $\mathcal{O}(3)$ events are lost, which corresponds to the message buffer.

Control Features

Run Start - SALS

- Restarting the run, e.g. due to sub-system failure, follows the Stop-Abort-Load-Start sequence.
- Loading HLT takes a significant amount of time $\mathcal{O}(60s)$ due to initialization of the geometry in the reconstruction software.
- New data flow system allows for simplified Stop-Start sequence, because control
 messages allow to e.g. update the run number.

Monitoring Features

Socket Monitoring

- ZMQ applications answer with a JSON encoded dump of their internal state and counters via a specific TCP message.
- Currently only used for manual debugging.
- ZMQ available as a python library, simple monitoring and data collection pipelines can be built and executed.

1111011111	b2hlt_monitor.py hltin:7000 hltout:700	tcp://hltin:7000	tcp://hltout:700
input	all_stop_messages		
	all_terminate_messages		
	average_number_of_events_per_package	2.08	
	average_received_byte_packages	8079.88	
	current_size		
	data_size	3897	1623
	dead_workers		
	event_rate	3885.5	4812.3
	hello_messages		67
	last_clear		Thu Feb 6 17:17:10 200
	last_received_event_message		Thu Feb 6 17:17:25 202
	last_received_message		Thu Feb 6 17:17:25 202
	last_stop_overwrite		
	last_stop_sent		
	last_terminate_sent		
	received_events	15788	1578
	received_messages_after_stop		
	received_stop_messages		
	received_terminate_messages		
	registered_workers		67
	sent_stop_messages		
	sent_terminate_messages		
	sacket_connects		
	socket_disconnects		
	socket_state	connected	
	stop_overurites		
	total_number_messages		1646
	write_address		
monitor	monitoring_counter	84	
	cutput_state	readu	read
	waiting_since	Thu Feb 6 17:17:25 2020	Thu Feb 6 17:17:25 200
output	all_stop_messages		
	all_terminate_messages		
	data_size	3897	1623
	dismissed_events	0	
	event_rate	3885,76	4812.3
	last_stop_sent		
	last_terminate_sent		
	ready_queue_size	1344	
	registered_workers	672	
	sent_events	15788	1578
	sent_stop_messages		
	sent_terminate_messages		
	socket_connects		
	sacket disconnects		
	socket_state		connecte
roi	data_size		CONNECC
101	event_rate		4812.
	sent_events		1578
	socket_connects		1570
	socket_disconnects		
	socket_state		connecte

Experience

Experience

- Changing to a new data flow implementation is not free from teething problems, but . . .
- switching from raw TCP sockets and custom ring buffers to ZMQ has allowed for rapid development and bug fixes.
- the entry level for new developers has decreases significantly.
- the advanced monitoring features have already proven helpful for debugging.

Summary

Results

- New data transportation scheme handles rates up to 10 kHz per HLT unit.
- Comparison: Previous implementation was able to cope with 1.5 kHz.
- ZMQ based setup allows to omit Abort/Load in restart sequence which reduces downtime (Loading geometry is time intensive).
- Current setup of the data transport is future proof for the anticipated instantaneous luminosity of SuperKEKB.

Outlook

- Not all data flow is migrated to ZMQ yet, but conceptually no show-stopper.
- Socket monitoring can be included into the elastic stack (see Real-time monitoring of operational data in the Belle II experiment presentation).