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MOTIVATION

* Early detection of the quench development in superconducting magnets is
critical for its protection. Superconducting coils are easily damaged due to
hot-spot overheating if active protection is not timely activated resulting in
the loss of the magnet;

* This detection must be performed in real time with the minimal possible
amount of lag time between the detection and the activation of the
protection system;

* Systems design to detect the precursor conditions to the magnet quenching
are called quench detection systems (QDS);

* Quench detection characteristics are generally optimized for High
Temperature Superconducting (HTS) magnets, and Low Temperature
Superconducting (LTS) magnets. X
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DAMAGE

* Pictures of magnet cutout shows damaged due to delayed quench

detection;
* Failing to detect a quench don’t necessarily leads the magnet to burn,

depending on the magnet it can only cause excessive boiling of the cooling
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fluid, or reduce the magnets performance. /\I/\
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TYPICAL QUENCH DETECTION HARDWARE
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VOLTAGE TAP SYSTEM AT LBNL

LBNL QUENCH DETECTION SYSTEM
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REAL TIME DETECTION

SIGNAL ORIGIN
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Ww — Window width 2us- 100ms
TH1 —Trigger Threshold
TH2 — Action Threshold
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MULTIPLE SENSORS
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ACOUSTIC DETECTION

* In-house developed GaAs MOSFET TS SI===

amplified cryogenic acoustic emission S2 = e

sensors (1.9 - 300 K) S1 s
« Bandwidth up to ~300 kHz Location —0F

triangulation (~ 5 cm accuracy)
v" Non-intrusive S o
v" Immunity to magnetic fields - A=tk

< .05 N\

v Inexpensive, portable and easily adaptable to B
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various magnet configurations e 9
Ramping to a quench (slowed down 10x)

Tested on HQ series, HD3b, Mu2e solenoid, SCU, CCT series and HTS sub-scales Adopted by LARP
for MQXF-S and CERN for main dipole and HTS “Feather 2” dipole. _ )
Courtesy Maxim MartchevskKi >
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ELECTROMAGNETIC DETECTION

CCT magnet geometry requires a special antenna design: a linear coil that can be placed on
top of the coil winding, or in-between the layers.
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* 24 printed square coils (each is 2 layers, ~20 turn total, ~1 cm side).
Coils are dipole-bucked thus forming 12 independent sensors per array.

* PCBis 1.4 mm thick; Flex circuit can be as thin as 0.28 mm

* Two arrays can be further “stacked” linearly with a flat ribbon cabble

Installation on the outer layer of CCT2
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