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Context

• Computer vision is used in numerous 
experiments.

• Current frame grabber solutions are 
capable of high throughput. (1/10 GigE 
Vision, Cameralink)

• Hot spot detection algorithm is 
commonly used for machine protection.

• Computer vision algorithms can be 
developed in multiple platforms and 
devices.

• OpenCL offers a standard which make 
easier to develop heterogenous 
computing systems.



Objectives

•Create heterogenous computing architecture capable 
of processing parts of a hot spot detection algorithm.

•Modularize the CCL algorithm

•Propose execution flows using different platforms and 
devices with minimal code modifications.

•Analize performance using synthetic image testbench.

•Compare the results.
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Architecture: Host

•CPU
• Intel Core i7 Coffee Lake 3.60 GHz

•RAM
• 16 GB DDR3

• Expansion slots
• GPU

• AMD RX 5600
• NVIDIA RTX 2080 SUPER

• Optical link PCIe 3.0 x16



Architecture: GPU

AMD Radeon RX 5700

• Driver version: 20.20

• Memory: 8 GB

• Compute Units: 18

• Base Clock: 1610 MHz

• Boost Clock: 1750 MHz

• Memory Clock: 1750 MHz (14 Gbps)

• Geekbench 5 Result (compute): 51111

NVIDIA RTX 2080 Super

• Driver version: 450.57

• Memory: 8 GB

• Compute Units: 48

• Base Clock: 1650 MHz

• Boost Clock: 1815 MHz

• Memory Clock: 1937 MHz (15.5 Gbps)

• Geekbench 5 Result (compute): 119038



Architecture: FPGA

•NAMC-ARRIA10-FM
• SoC ARM + FPGA Intel 

Altera Arria 10
• 3 DDR4 memory 

interfaces 
• PCIe 3.0 (4 Gbps transfer)



OpenCL

•Open, royalty-free 
standard maintained by 
Khronos Group.

•Can be used in multiple 
devices (CPUs, GPUs, 
FPGAs)

•Code once, run 
everywhere.*



OpenCL

• The programs executed in the 
different devices are called 
kernels, which are written in a 
C code style.

• The functions to manage 
memory and launch kernels 
from the host are officially in C 
or, with a wrapper, C++. 
(Although there are unofficial 
implementations in Java and 
Python)
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Algorithm: Union Find

•One of the possible 
implementations for 
Connected Components 
Labeling.

•Check neighbour pixels 
and assign same label if 
related

• In this case we used 4-
connectivity
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Algorithm



Executions flows



Algorithm optimizations: GPU

• The pixels’ process order can not 
be determined

•Multiple pixels are processed at 
the same time



Algorithm optimizations: GPU

•Check the 4 cardinal pixels

•Use atomics to avoid concurrency 
problems when storing white pixel 
positions



Algorithm optimizations: FPGA

• Pixels are processed sequentially
• Only the west and north pixels of the 

current pixel need to be checked
• No concurrency problem = No use of 

atomics

• Access to global memory is slow
• Limit percentage of white pixels in a 

image to copy the data to local 
memory

• Limit image size to copy it to local 
memory

• Pipeline processing



Tests

•Synthetic images composed of black and white pixels 

placed randomly.

•White pixel density range from 10% to 30%.

•Image sizes from 32x32 to 512x512 (8-bit pixels. (Due 

to memory limitations on the FPGA)

•Repeated 1000 times in each device



Results
FPGA

AMD RX 5600
NVIDIA RTX 3080 SUPER

*FPGA running at 146.07 MHz



Conclusions

• Not GPU available in data acquisition platforms (PXIe/MTCA) -> Acquisition done by
FPGA

• Image data transfer implies time

• FPGA can binarize and label while pixels arrive (pipelining)

• Using an FPGA results in a lower power consumption.

• OpenCL makes easier testing different execution flows due to only using one
programing language.

• GPU better suited for processing the whole image at the same time

• FPGA could improve performance by parallelization and pipelining

• Scalability of FPGA performance with bigger FPGAs may improve results while
conserving determinism.



Future work

• Improve the FPGA algorithm

•Use a newer FPGA
• Higher clock speed (Currently 146.07 Mhz)
• Faster memory access

• Test in a full heterogenous system


