
Application of heterogeneous 
computing techniques for 

image-based hot spot detection
V. Costa, S. Esquembri, J. Nieto, A. de Gracia, A. Carpeño, M. Astrain, M. Ruiz

s.esquembri@upm.es

Instrumentation and Applied Acoustic Research Group, 

Universidad Politécnica de Madrid (UPM), Madrid, Spain



Index

•Context

•Objectives

•Proposed architecture

•Heterogenous 
computing (OpenCL)

•Connected Component 
Labeling

• Tests

•Results

•Conclusion

• Future work



Context

• Computer vision is used in numerous 
experiments.

• Current frame grabber solutions are 
capable of high throughput. (1/10 GigE 
Vision, Cameralink)

• Hot spot detection algorithm is 
commonly used for machine protection.

• Computer vision algorithms can be 
developed in multiple platforms and 
devices.

• OpenCL offers a standard which make 
easier to develop heterogenous 
computing systems.



Objectives

•Create heterogenous computing architecture capable 
of processing parts of a hot spot detection algorithm.

•Modularize the CCL algorithm

•Propose execution flows using different platforms and 
devices with minimal code modifications.

•Analize performance using synthetic image testbench.

•Compare the results.



Architecture

PCIe 

optical link

HOST
MTCA4 CHASSIS

Device

MCH carrier AMC ARRIA10 FPGA



Architecture: Host

•CPU
• Intel Core i7 Coffee Lake 3.60 GHz

•RAM
• 16 GB DDR3

• Expansion slots
• GPU

• AMD RX 5600
• NVIDIA RTX 2080 SUPER

• Optical link PCIe 3.0 x16



Architecture: GPU

AMD Radeon RX 5700

• Driver version: 20.20

• Memory: 8 GB

• Compute Units: 18

• Base Clock: 1610 MHz

• Boost Clock: 1750 MHz

• Memory Clock: 1750 MHz (14 Gbps)

• Geekbench 5 Result (compute): 51111

NVIDIA RTX 2080 Super

• Driver version: 450.57

• Memory: 8 GB

• Compute Units: 48

• Base Clock: 1650 MHz

• Boost Clock: 1815 MHz

• Memory Clock: 1937 MHz (15.5 Gbps)

• Geekbench 5 Result (compute): 119038



Architecture: FPGA

•NAMC-ARRIA10-FM
• SoC ARM + FPGA Intel 

Altera Arria 10
• 3 DDR4 memory 

interfaces 
• PCIe 3.0 (4 Gbps transfer)



OpenCL

•Open, royalty-free 
standard maintained by 
Khronos Group.

•Can be used in multiple 
devices (CPUs, GPUs, 
FPGAs)

•Code once, run 
everywhere.*



OpenCL

• The programs executed in the 
different devices are called 
kernels, which are written in a 
C code style.

• The functions to manage 
memory and launch kernels 
from the host are officially in C 
or, with a wrapper, C++. 
(Although there are unofficial 
implementations in Java and 
Python)



Algorithm: CCL

Obtain 
image

Binarize 
image

Label 
pixels

Connected 
Component 

Labeling

Obtain 
image

Connected 
Component 

Labeling

Binarize 
image

Label 
pixels

Acquire

Acquire



Algorithm: Union Find

•One of the possible 
implementations for 
Connected Components 
Labeling.

•Check neighbour pixels 
and assign same label if 
related

• In this case we used 4-
connectivity

·X X

X

X



Algorithm



Executions flows



Algorithm optimizations: GPU

• The pixels’ process order can not 
be determined

•Multiple pixels are processed at 
the same time



Algorithm optimizations: GPU

•Check the 4 cardinal pixels

•Use atomics to avoid concurrency 
problems when storing white pixel 
positions



Algorithm optimizations: FPGA

• Pixels are processed sequentially
• Only the west and north pixels of the 

current pixel need to be checked
• No concurrency problem = No use of 

atomics

• Access to global memory is slow
• Limit percentage of white pixels in a 

image to copy the data to local 
memory

• Limit image size to copy it to local 
memory

• Pipeline processing



Tests

•Synthetic images composed of black and white pixels 

placed randomly.

•White pixel density range from 10% to 30%.

•Image sizes from 32x32 to 512x512 (8-bit pixels. (Due 

to memory limitations on the FPGA)

•Repeated 1000 times in each device



Results
FPGA

AMD RX 5600
NVIDIA RTX 3080 SUPER

*FPGA running at 146.07 MHz



Conclusions

• Not GPU available in data acquisition platforms (PXIe/MTCA) -> Acquisition done by
FPGA

• Image data transfer implies time

• FPGA can binarize and label while pixels arrive (pipelining)

• Using an FPGA results in a lower power consumption.

• OpenCL makes easier testing different execution flows due to only using one
programing language.

• GPU better suited for processing the whole image at the same time

• FPGA could improve performance by parallelization and pipelining

• Scalability of FPGA performance with bigger FPGAs may improve results while
conserving determinism.



Future work

• Improve the FPGA algorithm

•Use a newer FPGA
• Higher clock speed (Currently 146.07 Mhz)
• Faster memory access

• Test in a full heterogenous system


