

Abstract - The ITER Neutral Beam Test Facility (NBTF) is an extensive R&D programme currently under advanced construction at Consorzio RFX, Padova (Italy), with the aim of developing and testing the technology required by the ITER neutral beam injectors. The NBTF uses a two-step approach that involves the implementation of two experimental devices: the first, SPIDER, for the study of the ion source and the second, SPIDER is being constructed and most electrical and mechanical components have been already installed. The operation of each experiment will be manage conventional control, the Central Interlocks System (CIS) to protect the investment, and the Central Safety System (CSS) to manage conventional control (I&C) systems, independent of each other, referred to as the Control and Data Acquisition System (CSS) to manage conventional control, the Central Interlocks System (CIS) to protect the investment, and the Central Safety System (CSS) to manage conventional control (I&C) systems, independent of each other, referred to as the Control (I&C) system (CSS) to manage conventional control, the Central Interlocks System (CIS) to protect the investment, and the Central Safety System (CSS) to manage conventional control (I&C) systems, independent of each other, referred to as the Control system (CSS) to manage conventional control, the Central Safety System (CSS) to manage conventional control (I&C) systems, independent of each other, referred to as the Control (I&C) system (CSS) to manage conventional control (I&C) system (CSS) to manage conventional control (I&C) systems, independent of each other, referred to as the Control (I&C) system (CSS) to manage conventional control (I&C) system (CSS) to manage convent (I&C) system (CSS) to manage responsible for occupational safety and environmental protection. Following a common principle in system reliability increases significantly from CODAS to CIS to CSS, whereas complexity decreases drastically. The paper will first discuss on the SPIDER I&C systems, with focus on the system evolution from SPIDER to SPIDER, triggered by both additional requirements and technology evolution. Finally the paper will discuss the interaction of the SPIDER I&C systems in the overall operation of the experiment.

SPIDER figures	Unit	values
Beam energy	keV	-100
Max source filling pressure	Ра	0.3
Max deviat. from beam uniformity		±10%
Extr. ion current density	A/m ²	>355 H ₂ >285 D ₂
Beam on time	S	3600
Co-extracted electron fraction		<0.5 H ₂ <1 D ₂

Integration of control, investment protection and safety in the ITER Neutral Beam Test Facility

A. Luchetta¹, G. Manduchi¹, A. Rigoni¹, C. Taliercio¹, N. Pomaro¹, M. Moressa¹, F. Paolucci², C. Labate²

Affiliations

^aConsorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) - Corso Stati Uniti, 4 35127 Padova – ITALY **^bFusion for Energy,** c/ Josep Pla, n^o 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona, Spain

Corresponding author: Adriano Luchetta – mailto: adriano.luchetta@igi.cnr.it

Fig. 6. SPIDER Central Interlocks System. It provides slow protection functions (20 ms PLC reaction time) and fast protection functions (10 µs FPGA reaction time time), defining reaction time as the time slot from fault detection to generation of protection commands. Implementation of slow functions uses a non-redundant PLC connected to I/O through Profinet, whereas fast functions are implemented through NI compactRIO (FPGA only, no

System supervision is implemented through WinCC-OA SCADA. Protection function reliability up to SIL1 (IEC 61508-1). Software is data driven: protection function can be programmed through incidence matrix (connections between causes and effects)

Global and SPIDER Operating States.		
SOS		
Gas only-pulse		
Plasma pulse		
HV test with/without gas		
ISEPS-only pulse		
Beam in H/D onto instrumented calorimeter		
Beam in H/D onto beam dump		

SPIDER CODAS, Central Interlocks System and Central Safety System are fully integrated and their coordinated operations allow the management of the Integration is achieved through high-level concepts, such as Global Operating States and SPIDER Operating Scenarios.

P. Agostinetti et al., Detailed design optimization of the SPIDER negative ion accelerator in view of the ITER NBI, Nucl. Fusion 56 016015 (2016) 16pp. M. J. Singh et al., Heating neutral beams for ITER: negative ion sources to tune fusion plasmas, New J. Phys. 19 055004 (2017).

V Toigo et al., The PRIMA Test Facility: SPIDER and SPIDER test-beds for ITER neutral beam injectors, New J. Phys. 19 085004 (2017) 1-26. A. Luchetta et al., Control and data acquisition of the ITER full-scale ion source for the neutral beam test facility, Fusion Eng. Des.96–97, 2015, 512-516. A. Luchetta et al., Progress in the design of SPIDER control and interlock systems, Fusion Eng. Des. 146 (2019) 1528-1532. A. Neto et al., MARTe: A Multiplatform Real-Time Framework, IEEETransactions on Nuclear Science 57(2), 2010, 479 – 486.

The work leading to this publication has been funded partially by Fusion for Energy under work programs WP2019 and ITER I/O under activity work program AWP2020. This publication reflects the views only of the authors, and Fusion for Energy cannot be held responsible for any use, which may be made of the information contained therein. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

22nd Virtual IEEE Real Time Conference

Fig. 8. SPIDER Central Safety System exploit a fullredundant architecture (S7-400FH PLC, WinCC-OA SCADA servers, network components).

Communication is implemented through PROFIsafe (tests are ongoing to qualify S7-400FH to WinCC-OA PROFIsafe communication profile).

System supervision is implemented through WinCC-OA SCADA.

Hardware and safety-relevant software are certified up to SIL3 (IEC 61508-1)

Safety Instrumented Functions are implemented through Matrix tool that also makes the test process faster and more reliable.

Fig. 6. Integration of Control, Interlocks and Safety is achieved through Global Operating States (GOS) and Operating Scenarios (SOS). GOS are overall states associated with permission/prohibition of specific activities. SOS are scenarios describing within a given GOS the actual activities to be carried out in a specific

GOS/SOS have safety implications and, as such, are set in CSS. The association GOS/SOS are propagated to CIS, through digital I/O signals, and select the active

CODAS receives the current association GOS/SOS from CIS and select the plant system