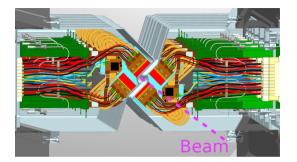

Readout firmware of the Vertex Locator for LHCb Run 3 and beyond

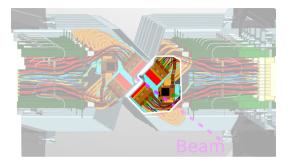

Karol Hennessy

on behalf of LHCb University of Liverpool / CERN October 14, 2020



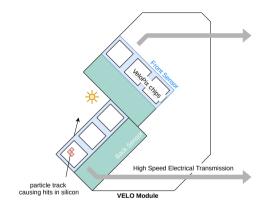
LHCb VELO

- LHCb Flavour physics detector
- Excellent **vertexing** resolution and Particle ID
- LHCb has triggerless readout full detector readout @ 40 MHz

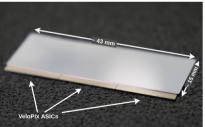


- Vertex Locator (VELO)
- Silicon pixel modules around the LHC collision region
 - $\circ~50 fb^{-1}$ integrated luminosity for LHC Runs 3 & 4
 - Very high radiation environment
 - In vacuum and under active cooling

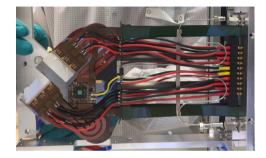
LHCb VELO

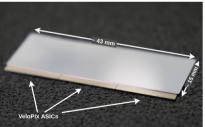


- LHCb Flavour physics detector
- Excellent **vertexing** resolution and Particle ID
- LHCb has triggerless readout full detector readout @ 40 MHz

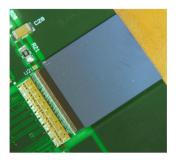


- Vertex Locator (VELO)
- Silicon pixel modules around the LHC collision region
 - $\circ~50 fb^{-1}$ integrated luminosity for LHC Runs 3 & 4
 - Very high radiation environment
 - In vacuum and under active cooling

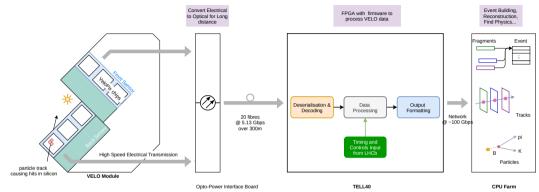

VELO Module


- Whole VELO = two halves of 26 modules
- Four sensors per module
 - 2 front
 - 2 back
- 3 VeloPix per sensor (i.e., 12 total)
- 20 high speed readout links
 - Chips closer to beam see more hits, and need more bandwidth

VELO Module

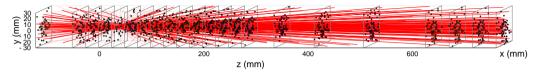


- Whole VELO = two halves of 26 modules
- Four sensors per module
 - 2 front
 - 2 back
- 3 VeloPix per sensor (i.e., 12 total)
- 20 high speed readout links
 - Chips closer to beam see more hits, and need more bandwidth

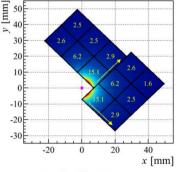


VeloPix ASIC

- Front-end ASIC driving the design of the VELO data acquisition system
- Part of the MediPix/TimePix family
- 130 nm CMOS technology
- 256×256 pixels of 55×55 μm^2
- Clocked at 40 MHz
- Sends binary hit information (reducing bandwidth requirement)
 - $\circ~$ full signal amplitude (ToT) available via slow readout for calibration


VELO Electronics and DAQ

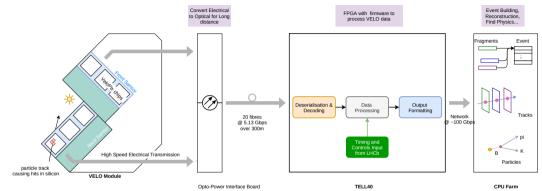
a slice of the VELO readout system


• See Flavio's talk on Friday for a fuller description of the LHCb DAQ

- Lots of data!
- VeloPix is optimised for high speed readout

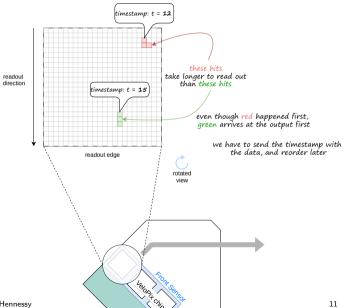
Peak hit rate	900 Mhits/s/ASIC
Max data rate	19.2 Gb/s
Total VELO	2.85 Tb/s

Data rate [Gbit/s] for hottest module.


Readout Board - PCIe40/TELL40

- Single control and readout board for the entire experiment
- Can be used for Timing, Slow Control, DAQ or all
- Common hardware, shared firmware components
- PCIe Gen3 x16
- Intel Arria10 FPGA (10AX115S4F45E3SG)
- 1 TELL40 = 1 VELO module

- up to 48 bi-directional links @ ${\sim}5\,Gb/s$
- Output bandwidth 100 Gb/s (measured).


VELO Electronics and DAQ

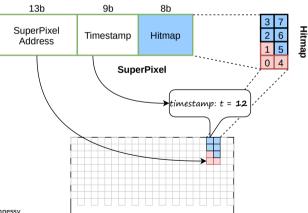
So what does the VELO Firmware have to do?

What does VeloPix produce?

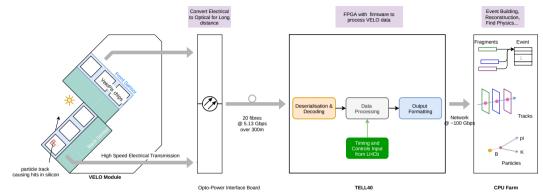
• Time unordered data

What does VeloPix produce?

- Time unordered data
- Custom transmission Protocol

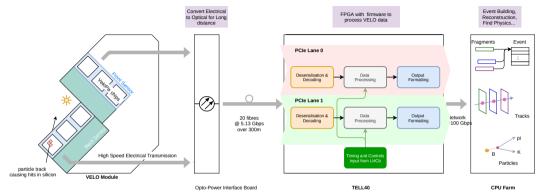

	30b	30b	30b	30b	4b	4b		
	VeloPix Data 3	VeloPix Data 2	VeloPix Data 1	VeloPix Data 0	PAR	HDR		
GWT Format								

- Custom serializer Gigabit Wireline Transmitter (GWT)
 - Chosen for low power 60 mW
 - 5.12 Gb/s line rate (slightly higher than 4.8 Gb/s of G**B**T)
- GWT protocol
 - scrambled data (30 bit multiplicative)
 - parity check, no error recovery
 - low tolerance for header errors


What does VeloPix produce?

- Time unordered data
- Custom transmission Protocol
- SuperPixels

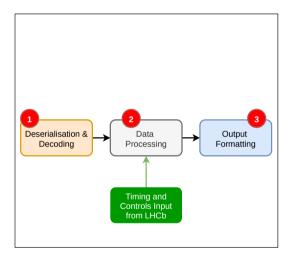
- Pixel data is aggregated into groups of 2×4 called **SuperPixels**
 - $\circ~$ 30% reduction in data size
- Timestamp stored in SuperPixel data packet



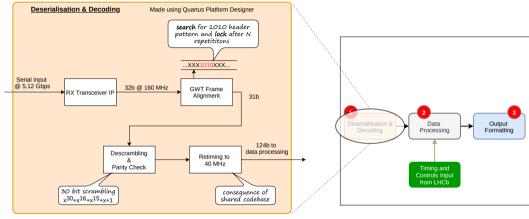
Readout Firmware

What's in the TELL40 Firmware?

Readout Firmware



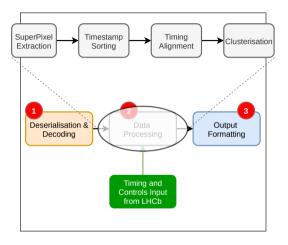
- Actually, it's two parallel streams for PCIe bandwidth optimisation
- But it's simpler to describe just one


Handling VeloPix data

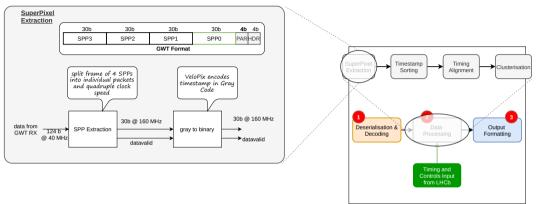
Going back to our list:

- 1. Custom transmission Protocol
- 2. Time unordered data SuperPixels
- **3.** *is a generic component and won't be discussed here*

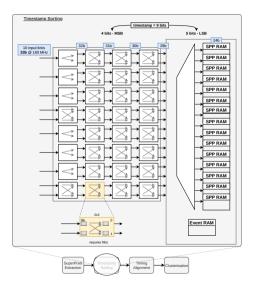
Handling VeloPix data - Deserialisation & Decoding



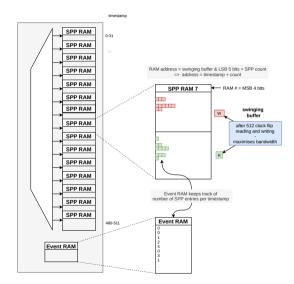
Handling VeloPix data


Going back to our list:

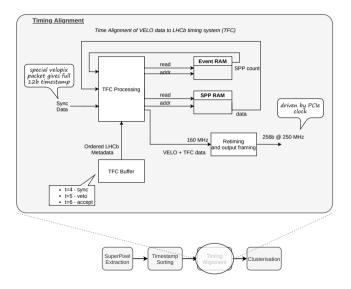
- 1. Custom transmission Protocol
- 2. Time unordered data SuperPixels
- **3.** *is a generic component and won't be discussed here*



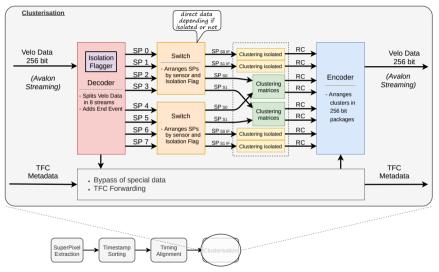
Handling VeloPix data - SuperPixel Extraction



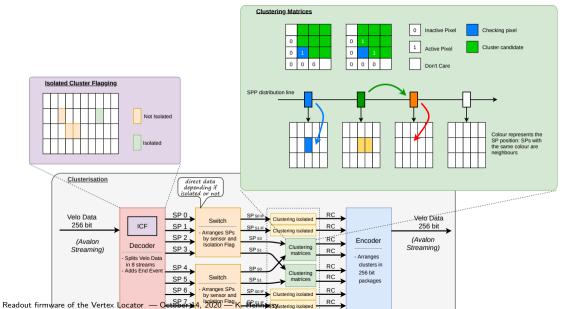
Handling VeloPix data - Time Reordering


- Timestamps are sorted 1 bit at a time in several layers
 - First column is MSB...
- Fifos are needed to avoid collisions
- Data are stored in RAMs at the end of the routing
- The whole reordering consumes a large amount of the FPGAs memory

Handling VeloPix data - Time Reordering

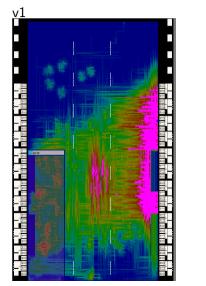

- After the routing, the RAM address is equivalent to the timestamp
- SuperPixel Packets are stored for a maximum latency of 512 clock cycles
- A swinging buffer is used to maximise bandwidth

Handling VeloPix data - Time Alignment

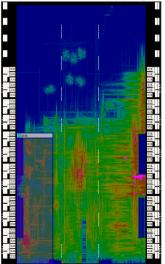


- After reordering, data must align to the rest of LHCb
- Timing and Fast Control (TFC) system provides LHCb timing metadata

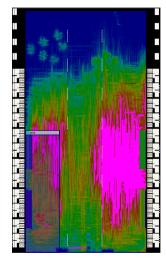
Handling VeloPix data - Clusterisation


Handling VeloPix data - Clusterisation

24


Challenges

Deserialisation & Decoding - Congestion


v2 Improved frame aligner æ GWT E. GBT

v3 Improved bit slipping

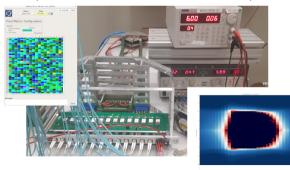
Full Data Processing

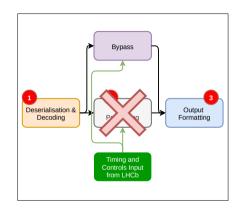
Now adding the full Time Reordering and Alignment

Slov	900mV 100C Model Setup Summary		
٩	< <filter>></filter>		
	Clock	Slack	End Point TNS
1	altera_reserved_tck	-42.950	-42.950
2	lli_inst[\multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[2]]rx_pma_clk	-8.931	-68.411
3	lli_inst \multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0 g_xcvr_native_insts[3] rx_pma_clk	-7.072	-28.643
4	lli_inst]\multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[5]]rx_pma_clk	-6.408	-25.894
5	TELL40_1 \GEN_FULL_DP:data_proc \pll_dp_a10_gen:inst_Data_Processing_clock iopll_0 outclk1	-5.173	-72643.573
6	lli_inst \multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0 g_xcvr_native_insts[0] rx_pma_clk	-4.718	-17.192
7	TELL40_0 \GEN_FULL_DP:data_proc \pll_dp_a10_gen:inst_Data_Processing_clock iopll_0 outclk1	-4.530	-61712.754
8	C100_osc	-2.237	-57.151
9	lli_instj\multiLink_gen_loop:4:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[3][rx_pma_clk	-1.559	-4.695
10	lli_inst[\multiLink_gen_loop:3:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[0][rx_pma_clk	-1.321	-1.359
11	lli_inst]\multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0]g_xcvr_native_insts[1]]rx_pma_clk	-1.305	-17.491
12	lli_instj\multiLink_gen_loop:3:multiLink_gen_gwnative_a10_0jg_xcvr_native_insts[1]jrx_pma_clk	-1.166	-3.869
13	lli_inst \multiLink_gen_loop:3:multiLink_gen_gwnative_a10_0 g_xcvr_native_insts[3] rx_pma_clk	-0.946	-1.879
14	lli_inst]\multiLink_gen_loop:2:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[4][rx_pma_clk	-0.889	-1.923
15	pcie_top pcie_1 qsys_pcie pcie coreclkout	-0.598	-14.636
16	lli_inst]\multiLink_gen_loop:4:multiLink_gen_gwnative_a10_0[g_xcvr_native_insts[4][rx_pma_clk	-0.566	-5.660
17	pcie_top pcie_0 qsys_pcie pcie coreclkout	-0.399	-9.267
18	pcie_top pcie_0 pcie_pll iopll_0 outclk_220	0.029	0.000
19	lli_inst TFC_XCVR1_inst xcvr_native_8b10b_deterministic_latency_cpri rx_clkout	0.215	0.000
20	lli_inst]\multiLink_gen_loop:5:multiLink_gen_gwnative_a10_0]g_xcvr_native_insts[0][rx_pma_clk	0.436	0.000

Timing closure becomes tricky

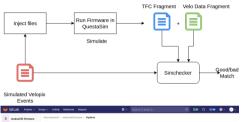
Resource Estimate


• Very preliminary estimate for now (sum of individual compilations - not the output of a complete build)

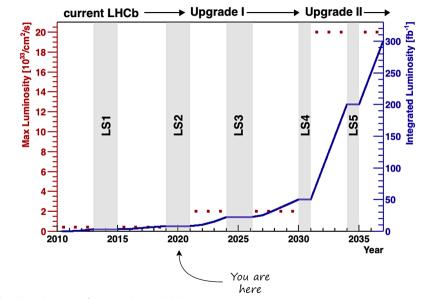

	Logic (ALMs)	M20K RAMs
Timestamp Reordering	39	72
Clustering	31	11
Total	70	83

• Looks like it will fit, but congestion and timing closure are the major challenges ahead

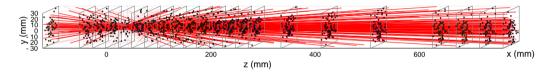
A working firmware...


- Full data processing is not complete today
- A bypass is used for production and testing
 - $\circ~\mbox{Sorting/processing}$ is done on CPU
 - Rate limited
- Can also be used to check data processing (send same data to both and check)

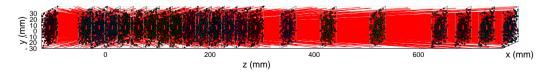
Tools/Organisation


- Typical combination of Questasim and Quartus
- LHCb employs gitlab pipelines for checking new releases
 - Sim-checker injects files into firmware and verifies on output
 - Can add additional testbenches and cross-checks à la "nightlies"
 - $\circ~$ Strict versioning and tracking
- VELO makes stable releases for production testing

ittab rojeni v ni	nys – Activity	Miletanes	trippets	0 ~		9 0 0 n	0 m 0 v 🕢 v
R readout40 firmware	Indo-madeut-80	readoutability	noste > Pipelnes				
Project	All 3,000+	Pending (8)	Ranning (S. Fini	hed 10000 Branches To	-C4		Fun Pipeline CI Lint
Deparitory	Status	Pipeline	Triggener	Commit	Stages		
D Issues (12)	Grunning	#1202190	8	Pmaster + cc21a4b5 Update hoHD, the			
Gi Jini				upase serv, tic			
Ti Morge Requests (8)	() failed	#1201-004		Pmaster $+$ cc21a4b5 Update hoH0; the		6 0429:10 10 7hours ago	» × ځ ×
v# CI/CD							
Pipelines	(© passed	#1200534 [J.Met	8	Pmaster + cc216465 Update heH0, We'	ଡ଼ଡ଼ঀଡ଼	6 00.59.05 @ 18 hours ago	۰ ئ
Schedules	(i) failed	#1200307	0	Prester + cc21a4b5 Update hoH0; the		6 00:34.57 m 19 hours apo	ى ئ
Charts				0,000,000,000		(i) i i i i i i i i i i i i i i i i i i	
Operations	() failed	#1200305	8	Pmaster + cc21a4b5 Update boH0; the	* *	ტ 09:28:37 ∰ 10 hours ago	» ب څ «
Packages							
85 Members	() failed	#1199275 [ase:	8	Pmaster + cc21a4b5 Update hoH0; the	C C C C C C C C C C C C C C C C C C C	ტ 00:29:02 ∰ 1 day ago	▶ * ₫ *
	() failed	#1198758		Prester + cc216465 Update bol40, the	0000	@ 15:30:45 m 20 hours app	 + ± +
				upane sevo, ric	۲	E zonoors ege	
	©passed	#1198548 [used]	8	Pmester + cc21a4b5 Update te440; the	@@ <u>!</u> @	の 00:32.53 曲 21 hours age	۰ پ
		#1198544	-	Vmester⇔cc21a485	0000	0 01:09:17	


...and beyond

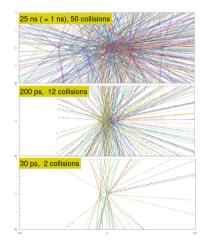
Timeline



VELO U2

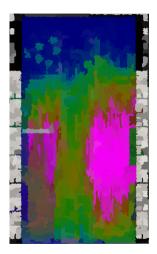
- HL-LHC (2028) will provide $7.5 \times$ luminosity
- Meaning 7.5× tracks/hits...
- Meaning we need a new VELO to go from this

• to this


...and beyond

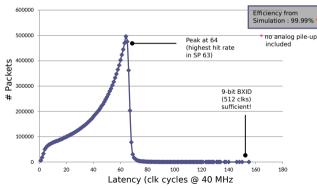
- Add extra timing precision (necessary for vertex/tracking)
- Bandwidth increase O(10)

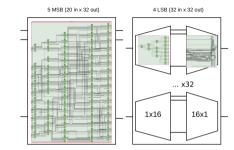
	Arria10	Agilex*	Factor Increase
Process	20 nm	10 nm	~ 2
Logic Elements (k)	1150	2692	2.3
M20k Memory (Mb)	53	259	4.9
DSP	1518	17056*	~ 16


Table: Comparison of FPGA resources for VELO U1b and a candidate for U2.

- Next gen FPGAs not quite scaling with the needs of the experiment!
- What can we do with all these DSPs?

Concluding Remarks

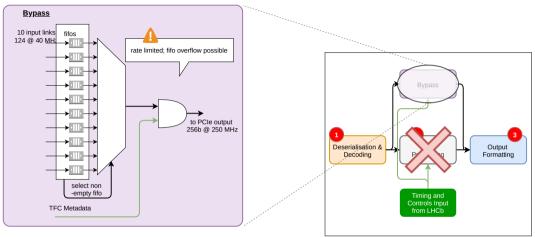

- LHCb VELO firmware on track to process VeloPix data
- Validating Time Reordering and Clustering
- Several challenges in terms of FPGA resources and timing closure
 - $\circ~$ Confident we can solve these
 - $\circ~$ We welcome any clever suggestions/tips
- Learning techniques to optimise the next generation of the experiment
- Need to adapt to the changing landscape of heterogenous computing



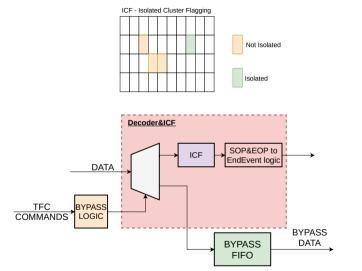
backup

BXID Router

- Time-ordering SuperPixel data
 - 9-bit router sorts data 1 bit at a time
 - Extensive simulation required both to maximise speed (>160 MHz) and minimise FPGA resource usage
 - $\circ~$ Latency limit < 512 clock cycles

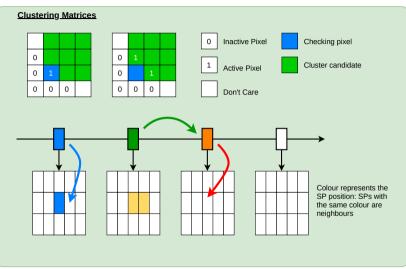


Special VeloPix A lot of non-standard DAQ elements...


- VeloPix has NO SCA
 - SLVS communication component required
 - extra SOL40 firmware
 - extra SOL40 software
- VeloPix **does NOT use GBT** for DAQ
 - uses GWT
 - \circ different frequency 5.12 Gbps
 - special VELO LLI firmware component
 - special firmware decoding, clocking...
 - special VELO LLI software

- VeloPix sends data "unsynchronicad"
 - Firmware re-aligns data but BXGTHINGS
 - Cannot filter events pre-alignment
 - Special dataflow monitoring needed
- Big effort from Online, Annecy, Marseille to help integrate into the standard firmware and software. Must remain vigilent and ensure "special cases" are tested as standard.

Bypass detail


Isolated Cluster Flagging

Isolated Clustering

Clustering Matrices

