
High level Firmware Design
with ARGG_HDL

Python based Hardware Description Language (Library)

1
Richard Peschke | rp40@hawaii.edu

Introduction

High Level Programming for Firmware Design

•Clean Code through Objects

•Generic Code through Templates
and customizable “HDL Converters“

•Powerful Tools by using an existing Language

2

Clean Code through Objects

3

Clean Code through Objects

Object-Oriented Design

Encapsulation

Class

Abstraction

Information Hiding

Polymorphism

Inheritance

Object-Oriented Design:

• is fundamental for (virtually) all High-Level
Programming Languages

• Is very successful when modeling complex
system

Encapsulation

• An Object has one task and it contains all
components it needs to fulfill this task

• Objects are modified through function
➔Preserving invariance
➔Avoiding Undefined behavior

Information Hiding

• Objects are defined by there public interface
not by their internal structure

• An objects internal structure is not important
for the user of the object

4

Typical VHDL Entity Declaration

• Consists of Three components:
• The Entity Name

• The Generics List
(Template Variables)

• Port List

• Ports Consist of:
• Name

• Type

• Direction (In/Out)

entity fifo_cc is
generic(

DATA_WIDTH : natural := 16;
DEPTH : natural := 5

);

port(
clk : in std_logic;
rst : in std_logic;
din : in std_logic_vector(DATA_WIDTH-1 downto 0);
wen : in std_logic;
ren : in std_logic;
dout : out std_logic_vector(DATA_WIDTH-1 downto 0);
full : out std_logic;
empty : out std_logic

);
end fifo_cc;

Synchronous
 FIFO

Write_Data

Write_Enable
Ready

Read_data

Read_enable
empty

5

Communication between Entities without Classes

• User Code and
Interface code is
intermingled

• Library code needs
to be re-
implemented for
each entity

• Library code is hard
to recognize

• Inputs and outputs
are independent
objects

6

Entity BEntity A

sequential
statements

sequential
statements

sequential
statements

Process Block
Process Block

sequential
statements

sequential
statements Ready

Valid

Data

sequential
statements

sequential
statements

sequential
statements

sequential
statements

sequential
statements

sequential
statements

sequential
statements

Interface
Code

User Code
Output

Input

Communication between Entities with Classes

7

• User Code and Interface
code is clearly separated

• Reusing of well
known (tested) functions

• Interface code is
immediately recognizable

Entity BEntity A

Data

Ready

Valid

Interface
 Code

User Code
Output

Input

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Interface
Object

Interface
Object

P
rim

ary

Se
co

n
d

ary

The Interface Class

• This Class describes the signals
required for the Interface

• In addition to just storing the type
of the data it also stores the
direction of the data

• By definition data flows from
primary to secondary
• port_out defines a signal that goes

from primary to secondary

• port_in defines a signal that goes
from secondary to primary

class axiStream_32(v_interface):
def __init__(self):
super().__init__()
self.valid = port_out(v_sl())
self.data = port_out(v_slv(32))
self.ready = port_in (v_sl())

8

Entity BEntity A

Data

Ready

Valid

Interface
 Code

User Code
Output

Input

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Interface
Object

Interface
Object

P
rim

ary

Se
co

n
d

ary

Example: Interface Handler Class

• This Class handles the primary (sender) side of the
interface.

• The constructor:
• takes the Interface class as argument

• It makes a local variable copy of it

• It connects the local copy to the Input argument

• The object knows exactly which signals have to go
in which direction

• The _onPull functions allows the creator of the
library to inject functionality on every clock cycle
(before the users code)

class axiStream_sender(v_handler_class):
def __init__(self, Axi_Out):
super().__init__()
self.tx = v_variable(Axi_Out)
Axi_Out << self.tx

def send_data(self, dataIn):
self.tx.valid << 1
self.tx.data << dataIn

def ready_to_send(self):
return not self.tx.valid

def _onPull(self):
if self.tx.ready:

self.tx.valid << 0

Data

Ready

Valid

M
aste

r
Pull

Push

Interface
Object

ready_to_send

send_data P
ri

m
ar

y

9

Example: Clocked Entity sending data Via Axi-Stream link
• Instead of defining individual Inputs and

outputs, defining an interface Object

• The Object “axiStream_32” contains all
information about input and output signals

• The object brings a handler with it.

• The handler is used for the communication
with the interface

• The handler provides the API for the interface

• The user never directly interacts with the data
members

from argg_hdl import *
from argg_hdl.examples import *

class Counter(v_clk_entity):
def __init__(self, clk):
super().__init__(clk)
self.Dout = port_out(axiStream_32())

@architecture
def architecture(self):
data = v_slv(32)
data_out = get_handle(self.Dout)

@rising_edge(self.clk)
def proc():

if data_out.ready_to_send():
data_out.send_data(data)
data << data + 1

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface
Object

10

Communication between Entities with Classes

11

Entity BEntity A

Data

Ready

Valid

Interface
Code

User Code
Output

Input

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Interface
Object

Interface
Object

P
rim

ary

Seco
n

d
ary

Entities are Objects

• Axi_Print:
• Is an entity that prints out the values it received from the

axi stream input

• It has a slave port of the same interface class as “Counter”

• In order to connect “Counter” with “Axi_Print” the
D_in / Dout Member needs to be connected

• Since the interface class knows which signal goes in
which direction the signals can just assigned to
each other

class tb(v_entity):
def __init__(self):
super().__init__()

@architecture
def architecture(self):
clkgen = clk_generator()
cnt = Counter(clkgen.clk)
axPrint = Axi_Print(clkgen.clk)
axPrint.D_in << cnt.Dout
end_architecture()

Data

Ready

ValidAXI Stream

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
se

r C
o

d
e

Interface Code

Interface Code

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
se

r C
o

d
e

Interface Code

Interface Code

Interface
Object

Entity:
Counter

Entity:
Axi_Print

class Axi_Print(v_clk_entity):
def __init__(self, clk):
super().__init__(clk)
self.D_in = port_in(

axiStream_32()
)

12

Generic Code through
Templates

and
customizable “HDL Converters“

13

Generic Interfaces Classes
• ARGG HDL:

• preserves as much as possible the generic
programming model of python

• All class members are generic objects

• The actual type of an object and its member is
only defined once it is created

• All function are generic / template function

• Example: Interface Classes

• For the actual implementation of the Axi Stream
interface class the data object is a template

• For each new Data Type the templating machine
will create a new class

• Data type can also be records and arrays

class axiStream(v_interface):
def __init__(self, Axitype):
super().__init__()
self.valid = port_out(v_sl())
self.data = port_out(Axitype)
self.ready = port_in (v_sl())

14

Entity BEntity A

Data

Ready

Valid

Interface
 Code

User Code
Output

Input

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Process Block

Pull

Push

sequential
statements

sequential
statements

sequential
statements

U
ser C

o
d

e

Interface Code

Interface Code

Interface
Object

Interface
Object

P
rim

ary

Se
co

n
d

ary

Example: Interface Handler Classes
• Optional_t is a generic container that stores

data of a certain type as well as a bit that
indicates if the data is valid or not

• cnt_out is an instance of axisStream_receiver.
It was written long before optional_t.

• Since optional_t has a reset function and an
assignment operator that accepts this data
type it will compile just fine

class tb(v_entity):
@architecture
def architecture(self):

clkgen = clk_generator()
cnt = Counter(clkgen.clk)
cnt_out = get_handle(cnt.Data_out)
data = v_slv(32)
opt_data = optional_t(v_slv(32))

@rising_edge(clkgen.clk)
def proc():

cnt_out >> data
cnt_out >> opt_data

end_architecture()

class axisStream_receiver(v_handle_class):
def __rshift__(self, rhs):
rhs.reset()
if self.data_internal_isvalid:

rhs << self.data_internal
self.data_internal_was_read << 1

15

Generic Conversion to VHDL

Entity File

Includes

Entity Definition

Generic List

Port List

Architecture

Architecture Header

Architecture Body

Architecture Body

Entity Instantiation

Combinatorial Logic

Process

Sensitivity List

Process Header

Process Body

Base

Primitive Types EntitiesClass Types

Shadow Hierarchy
Used for Conversion

Base

Primitive Types EntitiesClass Types

ARGG_HDL Hierarchy

HDL Converter Object

• For the conversion to VHDL each object has a
HDL Converter Object

• HDL Converter Object have the same inheritance
hierarchy as the object it belongs to.
(Shadow Hierarchy)

• Only Code inside the HDL Converter Object is
language specific

ARGG HDL Object Hierarchy

Code Injection

16

Code Injection

• Entities in VHDL consist of the blocks shown on
the left

• The HDL Converter Object of each ARGG_HDL
object has a function overload that can inject
code at any of these location

• The Python code and the VHDL code can be
made completely independent of each other

Powerful Tools by
using an existing Language

17

ARGG_HDL is Powered by Python

• ARGG_HDL is not a language; it is a library for a
language

➔ Simulation runs Cross-Platform as Python script

➔All tools and libraries for python can be used for
ARGG_HDL
➔ Step Debugging
➔ Data Visualization with Matplotlib, Plotly
➔ File IO with pyvcd, pandas or ROOT

➔Python has interface to virtually all other popular
languages

➔Co-simulation: either through language
interface or through TCP/IP sockets (or …)

➔Firmware development using a familiar language

➔Python has a packaging system

➔Convenient code sharing

18

Python

File IO

Network IO

Cross-
platform

Data
Visualization

Editors /
Debuggers

Firmware
Development

End

19

Backup

20

Device Under
Test

Hawaiian Muon Beamline (HMB) v3
Creation of Cosmic Muons

Tracking

Tracking

Tracking

Tracking

Calorimeter

Triggering plane

Triggering plane

Richard Peschke | rp40@Hawaii.edu

KLM Readout Boards

Hawaiian Muon Beamline (HMB) and KLM Readout Boards

22

class TX_TriggerBitSZ(v_entity):
def __init__(self, gSystem:globals_t):

self.gSystem = port_in(gSystem)
self.gSystem << gSystem
self.reg_out = port_out(registerT())
self.TARGET_TB_in = port_in(tb_vec_type())
self.TX_triggerBits = port_out(axi_Stream(trigger_bits_pack()))

self.architecture()

@architecture
def architecture(self):

edge_det = tb_edge_detection(self.gSystem)

self.TARGET_TB_in \
| \

edge_det

edge_det \
| trigger_scaler(self.gSystem) \
|\

self.reg_out

edge_det\
| package_maker(self.gSystem) \
| ax_fifo(self.gSystem.clk, trigger_bits_pack())\
| \

self.TX_triggerBits

end_architecture()

Trigger Bits in
(TARGET_TB_in)

Edge Detection

Trigger Counter
(Trigger Scaler)

Package Maker

Fifo

Trigger Bits out
(TX_triggerBits)

Trigger Scaler out
(reg_out)

Hawaiian Muon Beamline (HMB) and KLM Readout Boards

23

class optional_trigger_bits(v_record):
def __init__(self) -> None:

self.TriggerBits = tb_vec_type()
self.valid = v_sl()

class package_maker(v_entity):
def __init__(self, gSystem:globals_t, reg_out :registerT) -> None:

self.gSystem = port_in(gSystem)
self.gSystem << gSystem

self.trigger_bits_in = pipeline_in(optional_trigger_bits())
self.TX_triggerBits = pipeline_out(

axi_Stream(trigger_bits_pack())
)

self.architecture()

@architecture
def architecture(self):

counter = v_slv(64)
tx = get_handle(self.TX_triggerBits)
buff = v_variable(trigger_bits_pack())
@rising_edge(self.gSystem.clk)
def proc():

counter << counter + 1
if tx and self.trigger_bits_in.valid:

buff.time_stamp<< counter[32:]
buff.time_stamp_fine<< counter[0:32]
buff.data << self.trigger_bits_in.TriggerBits

tx << buff

Optional Trigger Bits in
(trigger_bits_in)

Increment
Timestamp Counter

Trigger Bits Package
(TX_triggerBits)

Fill Data into Package

Send Package

AND
Output
ready

Trigger bit
Valid

End

24

