

Robust control design for multi-input multi-output plasma shape control on EAST tokamak using H∞ synthesis

Lei LIU*, Bingjia XIAO, Yong GUO, Yuehang WANG Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China; H∞ control system design Suboptimal controller design

Background

Accurate plasma shape control is the basis of tokamak plasma experiments and physical research. EAST tokamak plasma shape controller designed based on a linear rigid plasma response model which contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. Meanwhile the single-input singleoutput (SISO) PID control approach is currently used for EAST plasma shape control. This leads to strong coupling between different parameters describing the plasma shape. To handle these problems, a $H\infty$ robust control scheme for EAST multi-input multi-output (MIMO) shape control has been proposed.

EAST Plasma Shape isoflux control Schemes

$H\infty$ controller:

Transfer function based on $H\infty$ control theory.

- . MIMO: multiple-input multiple-output
- 2. Model uncertainty is considered -Reduced sensitivity to plasma parameter variations
- 3. Robust control

- Enable highly accurate shape control in presence of disturbances, noise and equilibrium uncertainty

Let plant model G have a minimal realization G = (A, B, C, D). Then there exist unique stabilizing and positive-definite solutions X,Y to the algebraic Riccati equations

A'X+XA-XBB'X+C'C = 0AY+YA'-YC'CY+BB' = 0 $\gamma_{opt} = \sqrt{1 + \lambda_{max}(XY)} \ge 1$ Respectively, For any $1 \leq \gamma_{opt} \leq \gamma$ all suboptimal controllers are given by the parametrization: $K = (\Theta_{11}Q + \Theta_{12}) (\Theta_{21}Q + \Theta_{22})^{-1}$ where $\left[Z(A - YC'C)Z^{-1} \mid ZB \quad ZYC' \right]$ $\boldsymbol{\beta}^{-2}\mathbf{B}'X$ Θ^{-1} $0 \beta I$ $\beta^{-1}C$ Taking Q=0, get the H ∞ controller:

Loop shaping

W1, W2 for loop shaping: loop shaping is used to shape Reference the nominal plant singular values[¬] to give desired open and closed loop properties at frequencies of high and low loop gain.

Power supply saturation limitation and time delay

PF power supply saturation limitation		PF
Limitation 1	Maximum output (V)	•
Limitation 2	Limitation setup (V)	•

Power supply communication delay time and current rising time : ~3.3ms Power supply apability limitation list in the Table

For the purposes of this study, we finally want to designed a controller that combines good robust stability margins, speed of response, dynamic tracking characteristics, and closed-loop decoupling.

22nd virtual IEEE Real Time Conference 12-24 October 2020

Poster Session C-01 #063

Natural Science Foundation of China under Grant No.11805235