22nd Virtual IEEE Real Time Conference

The Data Acquisition System of protoDUNE dual-phase

20

A next generation experiment for neutrino science, supernova physics, and physics beyond the Standard Model

Dune Neutrino Detectors

- x4 Modules of Liquid Argon Time Projection Chambers of 60m x 12m x 12m
- Each hosting 10 kton of Liquid Argon
- Total Detector Mass of 40 kton of liquid Argon
- Big technical challenges in all domains (cryogenic, electronic, data rate and processing)

Underground laboratory at SANFORD

ProtoDUNE demonstrator at CERN 1:20 scale of DUNE

Present ProtoDUNE experiment at CERN (Switzerland)

ProtoDUNE dual phase detector installation has started in 2017.

It is operational at CERN (since august 2019)

Dual Phase Liquid Argon Time projection chambers technologies

iP2i

Internal view of protoDUNE with the charge readout plane

Bottom view of the Charge Readout plane with LEMs. (4 CRP of 3mx3m)

A total of 7680 analog signals to digitize and sent to event builders.

Camera view of surface of liquid Argon

22nd Virtual IEEE Real Time Conference 2020 c.girerd@ipnl.in2p3.fr

Cold electronic (in the gaseous phase) and signals output trhough chimneys

c.girerd@ipnl.in2p3.fr

Signal Feedthrough Chimney Warm Flange

16 channels amplifiers ASIC CMS 0.35 um (x40)

- Charge to voltage conversion (up to 1200 fC)
- Operating at 110°K
- Low noise (1300e-)
- Low power (18mW)

Top View of protoDUNE at CERN

10 Gbit/s

data link

Micro TCA Chassis on protoDUNE

NAT MCH (10Gbe)

AMC 64 channels digitization cards

MicroTCA chassis installed on the top of protoDUNE

chimneys

to AMC

ProtoDUNE charge readout AMC (120 units for protoDUNE)

Front-end AMC: 64 ADC channels / 10 Gbe readout

to

x12

AMC

to

x12

AMC

WRLEN

Distribution on Backplane from MCH 2 tongue 2 Allows Chassis Synchronization

Optical Fiber from WR switch

Simple board on which the WRLEN is plugged on •

x12

- Provides power to the WRLEN via the standard uTCA facilities ٠
- Delivers a pair of WR CLOCK (125 MHz) and WR DATA to each AMC slot (12)

WR switch and reference clock

10 MHz and PPS From reference Clock (Meinberg)

Fiber trigger from to PC + FMC_DIO Transports reference time and triggers Fiber to WRLEN (to MCH 2 adapter) and then to AMCs for time and triggers

The big-data/DAQ challenge

ProtoDUNE dual-phase DAQ/online storage facility /online processing system/offline data handling

NP02 DAQ/network infrastructure online offline uTCA crates 6x 10Gbit/s 40 Gbit/s CERN evb Local EOS FNAL EOS 2x 40 Gbit/ NP02EOS 1.5PB 20GB/s evb 2x 40 Gbit/s 40 Gbit/s 20x 10Gbit/s 7x 10Gbit/s CASTOR

- ✓ Excellent performance of DAQ back-end system (20 GB/s data storage bandwidth)
- ✓ 2 M events (4ms drift) acquired corresponding to 200 TB, data transferred to CERN EOS and FNAL
- ✓ Fast reconstruction (15s/event) performed on real time on the online computing farm (450 cores)
- \checkmark Offline reconstruction of data performed with LarSoft by the DUNE computing group

Cosmic Ray events in protoDUNE dual-phase

Electromagnetic shower + two muon decays Run 1256 Event 21 02.10.2019, 16:27:29 GMT + 426922088 ns - 200 92,8953 9,000 $E_{LEM} = 31 \text{ kV/cm}$ 150 8,000 0 Z - 000,7 5 **amble 1** 6,000 - 100 8 50 5,000 4,000 -100 200 30C 40C 50C **Channel No**

Multiple hadronic interactions in a shower

Horizontal muon track

Thank you for your attention !

See also the presentation of Quentin David for Huffman Compression/decompression implementation and performances

Cosmic events examples

White Rabbit based time and trigger distribution

- No need to develop analog clock distribution system and microTCA receiver cards
- Beam counters/large area cosmic counters trigger board also in WR standard → generates trigger timestamps transmitted on WR network
- Development of the WR slave as MCH mezzanine from a commercial WR node
- Tongue 2 of MCH2 is used to distribute clock and time on the backplane to all AMCs
- Sub-ns sync accuracy

WRLEN CARD (SEVEN)

Optical Fiber to WR switch

- Clock recovery 125 MHz phase control within 1 ns.
- Time keeping relative to Master.
- Modified firmware for backplane time/trigger distribution
- Bytes sent on WR_DATA are 8b/10b encoded (K28.1 is used as the no data word)

SPEC and FMC DIO cards (from Sevensol firm) Analog trigger to WR frames conversion

- A FMC DIO card generates time stamps when a trigger arrives
- The timestamp is send to every WRLEN node via the WhiteRabbit network
- The trigger frame is then forwarded to the AMC boards

FMC DIO card:

SPEC card:

Trigger Signal (5V)

- Front-end :
 - 10Gbe Ethernet for data transmission and control (well adapted for large distributed system
 - microTCA standard (12 chassis double width, dual star)
 - Advanced Mezzanine Board: 64 channels ADC 40 Msps (120 cards)
 - MCH with 10Gbe switch XAUI on backplane.

Synchronization and trigger management

- Grand Master White Rabbit switch (Distributed by SevenSol)
- Custom AMC 13 for White Rabbit Slave and clock/trigger distribution on backplane
- SPEC board from Sevensol for trigger distribution through the White Rabbit network
- Backend :
 - High performance Ethernet cards, servers

BACKEND for protoDUNE

22nd Virtual IEEE Real Time Conference 2020 c.girerd@ipnl.in2p3.fr

ProtoDUNE: 1:20 scale Demonstrator of DUNE at CERN

- 7680 output signals from detector readout plane
- 12 Chimneys allow the signal output from the detector •
- This structure should be duplicated for DUNE

DAQ back-end equipment in the DAQ room (IP2I) (support for 4 active CRPs readout):

- High bandwidth (20GByte/s) distributed EOS file system for the online storage facility
- → Storage servers: 20 machines + 5 spares (DELL R510, 72 TB per machine): up to 1.44 PB total disk space for 20 machines, 10 Gbit/s connectivity for each storage server.
- Online storage and processing facility network architecture:
- → Backend network infrastructure 40 Gbit/s DAQ switch (Brocade ICX7750-26Q) + 40/10 Gbit/s router (Brocade ICX 7750-48F)
 → Dedicated 10 Gbit multi-fibers network to uTCa crates
- \rightarrow Dedicated trigger network (x2 LV1 event builders + trigger server)
- \rightarrow x2 40 Gbit/s link to IT division

DAQ cluster and event builders:

- → DAQ back-end: 2 LV1 event builders (DELL R730 384 GB RAM) + 4 LV2 event builders (DELL R730 192 GB RAM)
- → DAQ cluster service machines: 9 Poweredge R610 service units: 2 EOS metadata servers, configuration server, online processing server, batch management server, control server, ...
- Online computing farm (room above the DAQ room):
- \rightarrow 40 servers Poweredge C6200 (450 cores)

