Redesign of the ATLAS Tile Calorimeter

Link Daughterboarad
for the HL-LHC.
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The HL-LHC and the ATLAS Hadronic Tile Calorimeter (TileCal).

TileCal is a sampling calorimeter composed of plastic scintillator tiles as active material interleaved with steel plates as absorber. The detector is divided in four
cylindrical barrels composed of 64 wedge-shaped modules each (Figure 1). The scintillators in each module are grouped in pseudo-projective cells. Light from two
sides of a cell is collected by wavelength shifting fibers and read out by two photomultiplier tubes (PMTSs).

The HL-LHC will have an instantaneous luminosity of 5 times the LHC nominal design value. The present TileCal read-out electronics will be incapable of dealing with
the higher radiation levels and increased rates of pileup. R&D is ongoing aimed to replace a TileCal electronics with a improved design that will provide continuous
digital read-out of all TileCal with lower electronic noise and better timing stability, therefore better energy resolution and less sensitivity to out-of-time pileup [1].

The TileCal read-out system for the HL-LHC.

The TileCal read-out system for the HL-LHC [1] consists of two sections: on-detector and off-detector electronics. The on-detector system (Figure 2)
will digitize two gains of the shaped analogue signal from each TileCal PMT at 40 MHz. The mechanics design is modularized in 896 Minidrawers (MDs), each
MD (Figure 3) serves up to 12 channels by means of:

> 12 Photomultiplier (PMTs) to turn light pulses into electric signals,
> 12 Front-End Boards (FEBs) to shape and condition the PMT signals,
> a Mainboard (MB) to digitize the two gains of each shaped PMT signal with a gain ratio
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*Double Redundancy - 2x fully independent sides to eliminate many
possible single failure points .

*Power circuitries to handle voltage distribution and current monitoring.
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*Cs interfaces (5V) to control the Cs calibration system.

The redesign of the DB 5 into DB 6 aims to solve the
radiation issues found, and to incorporate more robust
timing and extra features to minimize single points of
failure even further (Figure 6). Backwards compatibility with
previous interfaces will be kept.

 Migrating to the SEL-resistant 20 nm TSMC planar
technology Ultrascale FPGA family where SELs have not
been observed [3]. Increased level of SEU rates [2] within
the capabilities of SEM and TMR to mitigate.

« Migrate the power-on sequence done by means of an RC
circuit to a chain of DC-DC converters integrated with an SEL
current limiting circuitry that will increment the
robustness of the board to the presence of isolated SEL.

- Improve the firmware clocking and timing scheme by
using the Ultrascale XYPHY BITSLICE byte architecture for
the ADC read-out and the complex clock-diverse network, to
allow better timing closure and avoid congestion during the
firmware implementation [5] (Figure 7).

« Buffer and control all JTAG interfaces through a flash based
ProASIC FPGAs, to avoid undesired digital noise from a Power
GBTx Eports during a failing-downlink situation. Circuitry

*XADC interfaces to digitize added external sensors.

*HVOpto interfaces to control and monitor the internal HV option.

*400 pin FMC to interface with the MB.
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*Kintex Ultrascale+ FPGASs to drive all the DB digital logic that
distributes clocks and commands to the MB and sends the digitized
PMTs data to the PPr via multi-Gbps optic links .
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*48 bit ID chips to provide unique hardware ID number per side per DB.
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*GBTxs to provide high quality LHC synchronized clocks to drive the
GTY transceivers and the Front-End digitizing logic, as well as Front-End
configuration commands, remote reset and remote JTAG control.

*JTAG interfaces to allow FPGAs and PROMs reconfiguration.

*GBTx I12C interface to control and monitor GBTXs registers.

*4x SFPs (allowing nominal running with either one or two working links)
«2X RX — one to each GBTXx to receive GBT FEC protected words.
*4x TX — two from each FPGA to transmit GBT CRC protected words.
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