

Design of the Compact Processing Module for the ATLAS Tile Calorimeter

Fernando Carrió Argos Instituto de Física Corpuscular (CSIC-UV) on behalf of the ATLAS Tile Calorimeter System

October 16th 2020

Work supported by the Spanish Ministry of Science and the European Regional Development Funds - RTI2018-094270-B-I00

OUTLINE

- INTRODUCTION
 - TILE CALORIMETER
 - PHASE II UPGRADE

- COMPACT PROCESSING MODULE
 - HARDWARE AND PCB LAYOUT
 - CLOCK AND READOUT ARCHITECTURE
 - SIGNAL INTEGRITY AND CLOCK DISTRIBUTION TESTS

• SUMMARY

ATLAS Tile Calorimeter

- Segmented calorimeter made of steel plates and plastic scintillator tiles covering the most central region of the ATLAS experiment
- Measures energies of hadrons, jets, τ -leptons and E_T^{miss}
- 4 partitions: EBA, LBA, LBC, EBC
- Each partition has 64 modules
 - One drawer hosts up to 48 PMTs
 - Electronics is located in extractable "*drawers*" at the outermost part of the module

Tile Barrel Tile Extended Barrel

- Light produced by a charged particle passing through the plastic scintillating tiles is read out via wavelength shifting fibers to PhotoMultiplier Tubes (PMTs) inside the drawer
- Around 10,000 readout channels

- Large Hadron Collider plans to increase the instantaneous luminosity by a factor 5-7 around 2027→ High Luminosity-LHC
- Phase-II Upgrade: New readout strategy
 - On-detector electronics will transmit full digital data to the off-electronics at the LHC frequency \rightarrow <u>40 Tbps to read out the entire detector and ~6,000 optical fibres</u>
 - Buffer pipelines are moved to off-detector electronics
 - Redundancy in data links and power distribution \rightarrow improve system reliability

- The Phase II module is composed of 4 mini-drawers (up tp 48 PMTs). Each minidrawer has 2 independent read out sections for redundant cell readout
 - 12 PMTs + 12 front-end boards reading out 6 TileCal cells
 - $-1 \times$ MainBoard: operation of the front-end boards
 - 1 × DaughterBoard: data high speed link with the off-detector electronics
 - 1 × High Voltage distribution board
 - 2 × Low Voltage Power Supply bricks: low voltage power distribution, one for each independent side → 8 bricks form a Low Voltage Power Supply (LVPS).

• The Tile PreProcessor is the core element of the off-detector electronics

- Data processing and handling from on-detector electronics
- Provides clocks and configuration for the TileCal modules
- Interface with the ATLAS trigger and readout systems (FELIX)

- **32 TilePPr** boards in 4 ATCA shelves: ATCA carrier + **4 Compact Processing Modules**
- **32 TileTDAQ-I:** Interfaces with L0Calo, Global, L0Muon and FELIX system

Compact Processing Module - Overview

- Single AMC board with full-size form factor
 - 32 channels through 8 Samtec Firefly modules -----
 - 14 channels through AMC connector
 - Kintex KU085 for proto(v1), KU115 for final design
- High bandwidth readout system
 - Up to 400 Gbps via optics
 - Up to **175 Gbps** via electrical backplane

PCB layout design

- Total of 14 layers \rightarrow 1.6 mm thickness
 - 8 layers for PWR/GND, 6 layers for signals
 - ISOLA FR408HR ($\varepsilon_r = 3.68$, tan $\delta = 0.0092$)
- High-speed layout design and optimization
 - Supression of impedance discontinuities:
 Differential vias, connections, DC-blocking caps
 - Skew compensation to mitigate differential to common mode conversion

F. Carrió - IEEE Real Time Conference 2020

On-detector Readout and Operation

- High-speed interface with on-detector electronics DaughterBoard
 - 32 links@4.8/9.6 Gbps , GigaBit Transceiver (GBT) protocol
 - Operation and readout of 2 TileCal modules per CPM \rightarrow 8 mini-drawers
 - Up to 96 PMT channels with two gains
 - Configuration, TTC and LHC clock distribution
 - Data buffering of 10 µs per channel and gain

Trigger and DAQ path

- High-speed interface with ATLAS trigger system and FELIX
 - FULL mode protocol \rightarrow 8B/10B encoding, 9.6 Gbps
 - Real-time energy reconstruction to TDAQi @40 MHz
 - 4 FULL mode links@9.6 Gbps
 - Transmission of Level-0/1 trigger selected events to FELIX @1 MHz
 - 1 FULL mode link@9.6 Gbps

F. Carrió - IEEE Real Time Conference 2020

Detector Control System and configuration

- The Artix 7 FPGA controls and monitors all on-board peripherals
 - Clock unit & power system configuration
 - On-board monitoring
 - V/I monitoring, temperature sensors, optical modules, clocks
 - Receives on-detector monitoring data through Kintex UltraScale FPGA
 - Monitors phase drifts in the distributed LHC clock using the DDMTD circuit
- Communication with TDAQ and DCS systems through the ATCA carrier board

Signal integrity measurements

- Samtec Firefly modules @ 4.8 Gbps & 9.6 Gbps
 - Keysight DCA-X86100D sampling oscilloscope
 - Acceptable jitter values measured with PRBS-31 data pattern
- Bit Error Rate tests
 - Test bench with two CPMs, local clocks and 1.5-meter fibers
 - 32 links at 9.6 Gbps with PRBS31 pattern during one week
 - Total BER better than 1.6.10⁻¹⁷ for a confidence level of 95%

IBERT @ 9.6 Gbps (FPGA internal)

Clock distribution qualifications

- Measure the quality of the distributed clock by the Daughterboard GBTx chips
 - Sampling clocks distributed to the MainBoard ADCs
 - Clocks driving the Multi Gigabit Transceivers in the Daughterboard FPGAs (Kintex UltraScale)
- Measurements done with an Anritsu MS2840A signal analyzer
 - Higher phase noise values than Xilinx recommends for GTH clocks \rightarrow Additional TX jitter
 - Stable communication with DaughterBoard v5 was demonstrated using e-link

F. Carrió - IEEE Real Time Conference 2020

Summary

- New conditions imposed by HL-LHC requires a complete redesign of the TileCal on-detector and off-detector electronics
- Off-detector electronics for the Phase II Upgrade
 - 32 ATCA carrier and 128 Compact Processing Modules to read out TileCal
 - Total bandwidth of 40 Tbps between on-detector and off-detector
- Each Compact Processing Module
 - Clock distribution, readout and control of up to 2 TileCal modules
 - Triggered detector data transmission to FELIX
 - Reconstructed cell energy transmission to trigger system for trigger decision
- First prototypes are being validated
 - Single AMC board with full-size form factor
 - Kintex UltraScale, Artix-7 and 8 Samtec Firefly modules
 - Good signal integrity performance
 - Low noise clock distributed to on-detector electronics

THANK YOU FOR YOUR ATTENTION!