

ATLAS hardware-based Endcap Muon Trigger for future upgrades

22nd IEEE Real Time Conference October 12-23, 2020

Yuya Mino (Kyoto University) on behalf of the ATLAS Collaboration

Introduction

- Future upgrades are planned for new physics searches and standard model precision studies with higher energy and luminosity.
 - Run 3 : Increase center-of-mass energy to 14 TeV with an instantaneous luminosity to 2 × 10³⁴ cm⁻²s⁻¹ (Higher energy)
 - HL-LHC : Planned to start the operation in 2027 with an instantaneous luminosity of 5.0 - 7.5 × 10³⁴ cm⁻²s⁻¹ (Higher luminosity)

 Continuous upgrades of the hardware-based (Level-1/0*) endcap muon trigger is required to cope with the high event rate.

* First trigger level is renamed Level-1 \rightarrow Level-0 after Run3

Muon system in Run 2

 Muon detector system consists of 4 types of detectors for triggering and precision tracking.

Thin Gap Chamber (TGC)

- Multi-wire proportional chamber
- ▷ Covers the endcap region (1.05 < $|\eta|$ < 2.7)

Resistive Plate Chamber (RPC)

Covers the barrel region ($|\eta| < 1.05$)

Monitored Drift Tube (MDT)

Placed inside ($|\eta| < 2.0$) and outside ($|\eta| < 2.7$) the magnetic field

Cathode Strip Chamber (CSC)

 ▶ Placed only inside the magnetic field (2.0 < |n| < 2.7)
 ▶ Used to cope with high event rate

Level-1 muon trigger in Run 2

- p_T threshold is set for Level-1 muon trigger to select events with high-p_T muons from interesting physics processes.
- Level-1 muon trigger rate in Run 2 is dominated by
 - (1) Triggers by **low pt muons** below the pt threshold.
 - ② Triggers by charged particles emerging from the endcap toroid magnets. (Fake muons)
 - → New coincidence logic developed in Run 3 and HL-LHC to reduce ① & ②.

dR dΦ

- Basic concept of endcap muon hardware trigger : 0
 - Position difference (dR, d ϕ) in the TGC BW calculated on the front-end boards.
 - \triangleright dR, d ϕ information is handed over to a **Look-Up-Table (LUT)** implemented on trigger processor board to calculate p_T of the muon candidates. (TGC BW coincidence)
 - Require hits in the inner muon detector to reduce fake muons. (Inner coincidence)

M3

Level-1 endcap muon trigger in Run 3

- New detectors will be installed to measure muons with higher resolution and reduce fake muons.
 - **1** New Small Wheel (NSW)
 - Consists of 8 layers each of small-strip TGC and Micromegas. (Total 16 layers)
 - **2** Resistive Plate Chamber BIS78 (RPC BIS78)
 - Consist of 3 layers of RPC
 - ▶ Finer position and angle information combined with TGC BW position to reduce fake muons and re-calculate p_{T.} (①, ②)
 - \triangleright Coverage of the inner muon detector extended from $|\eta|$ = 1.9 to 2.4 . (1)

Coincidence logic with new inner muon detectors in Run 3

 Position and angle matching between TGC BW and new inner muon detectors are implemented to measure p_T with higher precision.

Coincidence logic with new inner muon detectors in Run 3

 Position and angle matching between TGC BW and new inner muon detectors are implemented to measure p_T with higher precision.

Hardware design of Sector Logic in Run 3

- Endcap trigger processor board (Sector Logic) is required to have
 - ① Enough I/O ports to handle data from various detectors.
 - ② Large amount of resources to implement new coincidence logic.
 - New Sector Logic (SL) board has been developed.

* GTX: multi-gigabit transceivers for Xilinx Kintex-7 FPGAs

Installation is completed and the commissioning is ongoing.

Firmware implementation for NSW coincidence logic

- Each muon candidate from TGC BW is compared with 16 track candidates from NSW.
- Limitation on the latency is set to 2 LHC clocks (40 MHz) in Run 3.
 ①Coincidence is calculated in parallel using two identical LUTs with 320 MHz clock.
 → 2 × 8 = 16 candidates can be processed in 1 LHC clock.

(2) The best candidate is chosen in the p_T selection.

Performance of Level-1 endcap muon trigger in Run 3

Efficiency

- Rejection power for low p_T muons is estimated from a single muon MC simulation sample.
 - ▶ Higher reduction for low p⊤ muons relative to Run 2 trigger.
 - ▶ ~ 95% relative efficiency for muons with $p_T > 20$ GeV.

Trigger rate

- Rejection power for fake muons is estimated from 2017 data. (fake muons cannot be modeled by MC)
 - > ~ 90% of fake muons are reduced by new inner muon detectors compared to Run 2 logic.
 - Expected trigger rate in Run 3 is 13 kHz. (~ 53% rate reduction)

Level-0 endcap muon trigger in HL-LHC

- Required to reconstruct muon candidates with an improved momentum resolution to suppress trigger rate with minimal efficiency loss.
- Trigger and readout electronics will be replaced to extend latency and acceptable rate.
 All TCC bit signals transformed from new bounds on the dataster side
 - All TGC hit signals transferred from new boards on the detector side.
 - Track reconstruction using full-granular information will be enabled.
 - MDT (precision measurement detector) will be included in the first-level trigger to recalculate p⊤ with higher precision.

TGC track reconstruction

- Tracks are reconstructed in TGC with a pattern matching algorithm.
 - \triangleright Comparing the TGC hits with predefined hit-lists for high-p_T muons.
 - Each predefined hit pattern has angle and position information associated to a track segment.
 - Coverage of the lowest p_T in the hit-lists is 4 GeV
- TGC tracks extracted in two steps
 ① Take coincidence to set a position in each station.
 - ② Extract track information from the pattern list.

Hit ch: $B B B \rightarrow M1$ Position ID: 3

M2 Coincidence

Hit ch: $B C \rightarrow M2$ Position ID: 4

M3 Coincidence

Hit ch: $C \rightarrow M3$ Positon ID: 5

② Extraction of track information

Input (Positi	Input (Position ID, 16 bit)		Output (Track segment, 18 bit)
3	4	4	Position η_a , Angle $\Delta \theta_a$
 3	4	5	Position η_b , Angle $\Delta \theta_b$
3	5	5	Position η_c , Angle $\Delta \theta_c$

22nd IEEE Real Time Conference

Hardware design of Sector Logic in HL-LHC

- Endcap Sector Logic in HL-LHC is required to have
 - ① Enough I/O ports to handle hit data from every TGC channel. (~ 6700 ch)
 - 2 A few hundred Mbits of memory resources to reconstruct track segments.

* GTY: multi-gigabit transceivers for Xilinx UltraScale FPGAs

The design of schematic and layout is ongoing.

Firmware implementation for track reconstruction

Performance of Level-O endcap muon trigger in HL-LHC

Efficiency

- Expected efficiency of the new trigger algorithm with respect to offline muons in an MC sample.
 Compared to Run 2 trigger.
 - Higher efficiency (~ 4%) in the plateau region due to the looser coincidence.
 - Better rejection for low pT muons.

Trigger rate

- Estimated trigger rate from Run-2 data taken with random trigger to reproduce higher luminosity expected in HL-LHC.
 - Rate for 20 GeV threshold is about 23 kHz.

(constitutes only about **2.3%** of the assumed total Level-0 trigger rate of 1 MHz)

Further rate reduction in the next step with MDT is expected.

22nd IEEE Real Time Conference

Summary

 Continuous upgrades of the hardware-based (Level-1/0) endcap muon trigger is planned for Run 3 and HL-LHC.

<u>Run 3</u>

- New inner muon detectors with fine track information will be installed.
 New trigger processor board (SL) has been produced for Run 3.
- New trigger using new detectors shows higher reduction of low p⊤ muons compared to current trigger system.
- Estimated Level-1 endcap muon trigger rate for 20 GeV threshold is ~ 13 kHz.
 (@ 2 × 10³⁴ cm⁻²s⁻¹)

HL-LHC

Trigger and readout electronics will be replaced.

Fast track segment reconstruction will be implemented.

Preliminary design of the trigger processor board and firmware has been made.

- New trigger shows ~ 4% higher efficiency than current trigger system.
- Estimated Level-0 endcap muon trigger rate for 20 GeV threshold is ~ 23 kHz.
 (@ 7.5 × 10³⁴ cm⁻²s⁻¹)

Further rate reduction is expected by MDT track trigger.

Endcap muon trigger system in Run 3

New Small Wheel

Consist of small-strip TGC and Micromegas

sTGC (small strip TGC)

- Strips with a 3.2mm pitch for precision readout (Current strip width of TGC is > 15 mm)
- Cathode plane on the other side has pads for triggering

Micromegas (micro mesh gaseous structure)

- Main tracking chamber for precise segment reconstruction
- 8 layers are sandwiched by 4 layers of sTGC

Position resolution : ~ 30 μ m Angle resolution : ~ 0.3 mrad

Block diagram of SL firmware in Run 3

22nd IEEE Real Time Conference

Readout logic in Run-3

FPGA resource utilization in Run 3

Resource	Utilization	Available	Utilization %
LUT	32468	254200	12.77
BRAM	479.50	795	60.31
I/O	401	500	80.20
GTX	12	16	75.00

- Resource utilization is calculated by Vivado software.
 Firmware includes full readout and trigger firmware.
- BRAMs are mainly used for large LUTs for coincidence logics.
 TGC BW coincidence : ~ 9.6%
 - NSW coincidence : ~ 24.7%
 - ▶ RPC coincidence : ~ 7.5%

Estimated latency requirement in Run3

Latency contributions of New Sector Logic in units of BC (25 ns)

Latency to process NSW signals

Receive signal from NSW		41.1	Receive signals from BW		37
Optical Rx + De-serializer		44	Optical Rx + De-serializer	2	39
Variable Delay	1	45	TGC R-Phi coincidence (LUT)	2	41
Decoding/Alignment of NSW data (LUT) 1 46		46	Waiting for NSW signals	5	46
			BW - NSW coincidence (LUT)	2	48
			Track selection + $p_{\rm T}$ encoding	1	49
			Serializer (128 bit/clk., 6.4 Gb/s) + Optical Tx	2	51
			Optical fibre to MUCTPI (10 m)	2	53

- New Sector Logic will receive NSW signals 41.1 BCs after bunch crossing
 Deserializing and decoding will take ~ 4.5 BCs after receiving signals
 NSW coincidence will start at 46 BCs after bunch crossing
- Coincidence between TGC BW and NSW must be finished in 2 BCs (50 ns)

Level-O endcap muon trigger system

- ① Sector Logic (SL) receives hit and track information from TGC, NSW, RPC and Tile, and provides track candidates to MDT trigger processor.
- ② MDT trigger processor recalculates the track candidate p_T with better momentum resolution using MDT hits, and sends them back to SL.
- ③ SL sends the final candidates to MUCTPI.

Block diagram of SL firmware in HL-LHC

22nd IEEE Real Time Conference

Estimated FPGA resource utilization in HL-LHC

	BRAM (Mb)	URAM (Mb)	HP I/O	GTY
Availability	75.9	270.0	448	120
Trigger Logic	20.5	123	-	-
Readout Logic	23.8	-	-	-
Interface	-	-	-	90 - 92
Control/monitor	-	-	O(10)	-
Total	44.3	120	O(10)	90 - 92

- Estimation based on extrapolation from resource utilization of partially developed firmware.
- Largest contribution to the URAM utilization is the TGC wire track reconstruction.

Estimated latency requirement in HL-LHC

Estimated latency contributions of Sector Logic in HL-LHC

Contents	Latency	
TGC hit signal arrival	0.888 µs	0.125 // 0
Coincidence of TGC BW	1.013 µs	0.125 µs
TGC BW and TGC EI coincidence	1.063 µs	
TGC BW and RPC BIS78 coincidence	1.360 µs	
NSW track candidate and TileCal signal arrival	1.425 μs	
TGC BW and NSW (TileCal) coincidence	1.450 µs	
Final selection of track candidate	1.475 μs	
	- • •	

• The TGC track reconstruction is required to be finished in 0.125 μ s

Hardware design of Sector Logic in HL-LHC

• Xilinx Virtex UltraScale+ is implemented on a ATCA* blade.

22nd IEEE Real Time Conference

Initial test of track segmentation

 A test firmware of TGC pattern matching algorithm is implemented in an FPGA to estimate performance.

• Expected memory usage for the full η range is about 100 Mbit, which is one-third of 345.9 Mbit of RAM resources on XCVU9P.