FELIX: commissioning the new detector interface for the ATLAS trigger and readout system Roberto Ferrari INFN Pavia On behalf of the ATLAS TDAQ Collaboration 22nd Virtual IEEE Real Time Conference 12 October 2020 ### Overview ATLAS TDAQ evolution for Run 3 FELIX* readout system Performance & commissioning Conclusions *FELIX: Front-End LInk eXchange → (custom) PCIe cards hosted in COTS servers ### ATLAS TDAQ in Run 2 ~ 2 MB events, ~ 50 GB/s network bandwidth, ~ 1.5 GB/s recording throughput ^{*}S-LINK: CERN Simple Link 3 ### ATLAS TDAQ in Run 2 - Custom HW/protocols for Front-End (FE) readout - •Data buffered in FE elx waiting for L1 trigger (max latency $\sim 2.5 \mu s$) - •Trigger and LHC clock sent to both FE elx and (detector specific) ReadOut Drivers (RODs) - •RODs send data to ReadOut System (ROS) which buffers them for High-Level Trigger (HLT) requests - •HLT finalises event selection in two steps Readout system: ~1 k ROD boards ~150 ROS servers 1 # Upgrade for Run 3 ### LHC Phase-I Upgrade → ATLAS trigger & detector upgrade 1) new muon detectors in both forward and transition regions → additional readout channels more than full present muon spectrometer 2) new trigger elx in calorimeter system → upgraded readout architecture ### Upgrade for Run 3 #### Same requirements as Run 2 *GBT: GigaBit Transceiver with Versatile Link ### Upgrade for Run 3 Same requirements as Run 2 but reduced custom components Custom elx component including FELIX cards PCs (COTS) *GBT: GigaBit Transceiver with Versatile Link #### New Readout Architecture ### New Readout Architecture #### FELIX: data/signal/message routing from/to FE elx detector state agnostic pushes detector fragments to SW ROD servers #### SW ROD: data collecting and processing supporting configuration, calibration, control, and monitoring interface to HLT #### Run 3 FELIX system: ~100 FLX boards / 60 servers ~30 SW ROD servers # FELIX system FLX-712: ATLAS production board for Run 3 ### FELIX functionality - Router between FE serial links and commercial network - Data transport decoupled from data processing - Get and distribute TTC (Timing, Trigger and Control) signals - GBT-mode configurable e-links* - Detector independent ^{*}e-link: data mux/demux protocol (more physical electrical links packed over one single GBT link) ### FELIX block diagram PC hosting up to two PCIe FELIX cards + network card #### FLX-712 card features - Kintex UltraScale FPGA - 8 MiniPODs - 16-lane PCIe Gen3 - Flash and μ-controller for FW update - On-board jitter cleaner - Timing mezzanine to interface TTC system - 24 x 4.8 Gb/s links @ PCIe limit - 12 x 9.6 Gb/s links @ PCIe limit - 48 links as TTC dispatcher #### Rates #### Run 3 parameters for FELIX readout (worst cases) | Name | <chunksize></chunksize> | Rate per channel | Channels per
FELIX | Chunkrate per FELIX | Datarate per
FELIX | |-----------|-------------------------|------------------|-----------------------|---------------------|-----------------------| | | Bytes | kHz | | MHz | Gb/s | | GBT Mode | 40 | 100 | 384 | 38.4 | 12 | | FULL Mode | 4800 | 100 | 12 | 1.2 | 46 | GBT Mode → FPGA-resource limited FULL Mode → PCIe-bandwidth limited ### Firmware flavours | | FLX-712
chans | |--|--------------------| | GBT dynamic - all combinations of e-links (2,4,8) and modes (8b/10b, HDLC) | 4+4 | | GBT semi-static - static & configurable links | 12+12 | | FULL - 6+6 channel matches max PCIe bw - 12+12 channel @ lower bw | 12+12 | | LTDB* mode - only clock distribution, trigger, slow control and monitork | 24+24
(LTDB) | ^{*}LTDB: Liquid Argon Digitizer Board ### Software low level sw → basic configuration/monitoring (e-link conf., felix monitoring) higher level sw → data rate and channel monitoring #### felix-star - single-threaded event loop, any operation is one event - networking based on new communication library: NetIO-next - data transfer uses RDMA i.e. kernel not involved - higher performance **RDMA NIC** #### GBT mode - stable multi-hour operation (longer than average LHC fill) - reliable parallel communication with test board featuring DCS components ~ 12.5 Gbps network throughput #### GBT mode - BUSY signal propagation correctly handled - Emulator rump-up demonstrated rates 50% above expectation (150 kHz) #### FULL mode • stable multi-hour operation (longer than average LHC fill) #### Stress test - backpressure shows up at $\sim 200 \text{ kHz}$ - achieved ~ 300 kHz # User support & integration - Active user support → crucial: user issues more and more difficult to reproduce in TDAQ testbed - Further push toward integration # Summary & Outlook ATLAS TDAQ evolution for Run 3: FELIX + SW ROD replace (part of) ROD + ROS system - → more flexibility, reduced custom design - → architecture for Run 4 and beyond HW commissioning and deployment ongoing (~ 200 FELIX cards already delivered) SW development in progress Performance tests consistently exceed Run 3 requirements User feedback more and more relevant Please, see also talk by Serguei Kolos on SW ROD # Thanks! # Extras ### ATLAS Readout in Run 3 New Muon detectors: New Small Wheels, small "BIS7/8" RPCs New L1 Calo trigger system → exploit commodity and/or common hw as soon as possible #### **FELIX** - Connects directly to detector FEE - Receives and routes data from detector directly to clients - Routes L1 trigger, clock and control signals to detector FEE - Able to interface both with GBT protocol and directly to remote FPGA via high bandwidth 'FULL mode' protocol #### **SW ROD** - Software process running on servers connected to FELIX via high bandwidth network - Common platform for data aggregation and processing enables detectors to insert their own processing into data path - Previously performed in ROD hardware - Buffers and on request serves data to HLT - Interface indistinguishable from legacy readout (ROS) - Control and monitoring applications now distributed among servers connected to data network # Upgrade for HL-LHC (Phase-II) ~ 5 MB events, ~ 5 TB/s network bandwidth, ~ 50 GB/s recording throughput GBT, LpGBT* or FULL mode links COTS network technology Custom elx component including FELIX cards PCs (COTS) *LpGBT: Low-power GBT # FELIX firmware design Central router block handles e-links e-link: data mux/demux protocol designed for ATLAS Fixed latency transmission to FE DMA for PCIe throughput to host memory (2×64 Gbps) # Performance & integration (Phase-II) #### FELIX testbed: pc-tbed-felix-06 pc-tbed-felix-07 FELIG 712 FELIX 712 TTCVi • 1 MHz random L1A for NSW Phase II • stable transfer rate with **felix-star**, no errors • 32×260 Mb/s links • actual test to be performed with NSW vertical slice pc-tbed-swrod-01 east to be 29 12 October 2020 ### Integration in FELIX testbed #### Integration with new trigger system (ALTI) - ALTI installed and update - learning how to operate it #### Integration with swROD - several test runs with felix sw emulator - rerunning test with new sw #### Integration with OPC-UA - DCS sw depends on NetIO library - preparing joint set-up as common reference frame ### Software transition #### felixcore - multiple-threaded, pipeline architecture - networking based on "NetIO" library - functional, minimal performance margin - supported until all users migrated to felix-star #### felix-star - single-threaded event loop, any operation is one event - networking based on "NetIO-next" library - uses RDMA i.e. kernel not involved in data transfer - higher performance - transition in progress ... ### GBT test configuration: #### GBT test results: #### FULL-mode test configuration: #### FULL-mode test results: • investigating scaling problem