

FELIX: commissioning the new detector interface for the ATLAS trigger and readout system

Roberto Ferrari INFN Pavia

On behalf of the ATLAS TDAQ Collaboration

22nd Virtual IEEE Real Time Conference 12 October 2020

Overview

ATLAS TDAQ evolution for Run 3

FELIX* readout system

Performance & commissioning

Conclusions

*FELIX: Front-End LInk eXchange → (custom) PCIe cards hosted in COTS servers

ATLAS TDAQ in Run 2

~ 2 MB events, ~ 50 GB/s network bandwidth, ~ 1.5 GB/s recording throughput

^{*}S-LINK: CERN Simple Link

3

ATLAS TDAQ in Run 2

- Custom HW/protocols for Front-End (FE) readout
- •Data buffered in FE elx waiting for L1 trigger (max latency $\sim 2.5 \mu s$)
- •Trigger and LHC clock sent to both FE elx and (detector specific) ReadOut Drivers (RODs)
- •RODs send data to ReadOut System (ROS) which buffers them for High-Level Trigger (HLT) requests
- •HLT finalises event selection in two steps

Readout system: ~1 k ROD boards

~150 ROS servers

1

Upgrade for Run 3

LHC Phase-I Upgrade → ATLAS trigger & detector upgrade

1) new muon detectors in both forward and transition regions

→ additional readout channels more than full present muon spectrometer

2) new trigger elx in calorimeter system

→ upgraded readout architecture

Upgrade for Run 3

Same requirements as Run 2

*GBT: GigaBit Transceiver with Versatile Link

Upgrade for Run 3

Same requirements as Run 2 but reduced custom components

Custom elx component including FELIX cards

PCs (COTS)

*GBT: GigaBit Transceiver with Versatile Link

New Readout Architecture

New Readout Architecture

FELIX:

data/signal/message routing from/to FE elx detector state agnostic pushes detector fragments to SW ROD servers

SW ROD:

data collecting and processing supporting configuration, calibration, control, and monitoring interface to HLT

Run 3 FELIX system:

~100 FLX boards / 60 servers

~30 SW ROD servers

FELIX system

FLX-712: ATLAS production board for Run 3

FELIX functionality

- Router between FE serial links and commercial network
- Data transport decoupled from data processing
- Get and distribute TTC (Timing, Trigger and Control) signals
- GBT-mode configurable e-links*
- Detector independent

^{*}e-link: data mux/demux protocol (more physical electrical links packed over one single GBT link)

FELIX block diagram

PC hosting up to two PCIe FELIX cards + network card

FLX-712 card features

- Kintex UltraScale FPGA
- 8 MiniPODs
- 16-lane PCIe Gen3
- Flash and μ-controller for FW update
- On-board jitter cleaner
- Timing mezzanine to interface TTC system

- 24 x 4.8 Gb/s links @ PCIe limit
- 12 x 9.6 Gb/s links @ PCIe limit
- 48 links as TTC dispatcher

Rates

Run 3 parameters for FELIX readout (worst cases)

Name	<chunksize></chunksize>	Rate per channel	Channels per FELIX	Chunkrate per FELIX	Datarate per FELIX
	Bytes	kHz		MHz	Gb/s
GBT Mode	40	100	384	38.4	12
FULL Mode	4800	100	12	1.2	46

GBT Mode → FPGA-resource limited

FULL Mode → PCIe-bandwidth limited

Firmware flavours

	FLX-712 # chans
GBT dynamic - all combinations of e-links (2,4,8) and modes (8b/10b, HDLC)	4+4
GBT semi-static - static & configurable links	12+12
FULL - 6+6 channel matches max PCIe bw - 12+12 channel @ lower bw	12+12
LTDB* mode - only clock distribution, trigger, slow control and monitork	24+24 (LTDB)

^{*}LTDB: Liquid Argon Digitizer Board

Software

low level sw → basic configuration/monitoring (e-link conf., felix monitoring)

higher level sw → data rate and channel monitoring

felix-star

- single-threaded event loop, any operation is one event
- networking based on new communication library: NetIO-next
- data transfer uses RDMA i.e. kernel not involved
- higher performance

RDMA NIC

GBT mode

- stable multi-hour operation (longer than average LHC fill)
- reliable parallel communication with test board featuring DCS components

~ 12.5 Gbps network throughput

GBT mode

- BUSY signal propagation correctly handled
- Emulator rump-up demonstrated rates 50% above expectation (150 kHz)

FULL mode

• stable multi-hour operation (longer than average LHC fill)

Stress test

- backpressure shows up at $\sim 200 \text{ kHz}$
- achieved ~ 300 kHz

User support & integration

- Active user support → crucial: user issues more and more difficult to reproduce in TDAQ testbed
- Further push toward integration

Summary & Outlook

ATLAS TDAQ evolution for Run 3:

FELIX + SW ROD replace (part of) ROD + ROS system

- → more flexibility, reduced custom design
- → architecture for Run 4 and beyond

HW commissioning and deployment ongoing (~ 200 FELIX cards already delivered)

SW development in progress

Performance tests consistently exceed Run 3 requirements

User feedback more and more relevant

Please, see also talk by Serguei Kolos on SW ROD

Thanks!

Extras

ATLAS Readout in Run 3

New Muon detectors: New Small Wheels, small "BIS7/8" RPCs New L1 Calo trigger system

→ exploit commodity and/or common hw as soon as possible

FELIX

- Connects directly to detector FEE
- Receives and routes data from detector directly to clients
- Routes L1 trigger, clock and control signals to detector FEE
- Able to interface both with GBT protocol and directly to remote FPGA via high bandwidth 'FULL mode' protocol

SW ROD

- Software process running on servers connected to FELIX via high bandwidth network
- Common platform for data aggregation and processing enables detectors to insert their own processing into data path
 - Previously performed in ROD hardware
 - Buffers and on request serves data to HLT
 - Interface indistinguishable from legacy readout (ROS)
- Control and monitoring applications now distributed among servers connected to data network

Upgrade for HL-LHC (Phase-II)

~ 5 MB events, ~ 5 TB/s network bandwidth, ~ 50 GB/s recording throughput

GBT, LpGBT* or FULL mode links

COTS network technology

Custom elx component including FELIX cards

PCs (COTS)

*LpGBT: Low-power GBT

FELIX firmware design

Central router block handles e-links e-link: data mux/demux protocol designed for ATLAS

Fixed latency transmission to FE

DMA for PCIe throughput to host memory (2×64 Gbps)

Performance & integration (Phase-II)

FELIX testbed:

pc-tbed-felix-06 pc-tbed-felix-07 FELIG 712 FELIX 712 TTCVi • 1 MHz random L1A for NSW Phase II • stable transfer rate with **felix-star**, no errors

• 32×260 Mb/s links

• actual test to be performed with NSW vertical slice

pc-tbed-swrod-01

east to be

29 12 October 2020

Integration in FELIX testbed

Integration with new trigger system (ALTI)

- ALTI installed and update
- learning how to operate it

Integration with swROD

- several test runs with felix sw emulator
- rerunning test with new sw

Integration with OPC-UA

- DCS sw depends on NetIO library
- preparing joint set-up as common reference frame

Software transition

felixcore

- multiple-threaded, pipeline architecture
- networking based on "NetIO" library
- functional, minimal performance margin
- supported until all users migrated to felix-star

felix-star

- single-threaded event loop, any operation is one event
- networking based on "NetIO-next" library
- uses RDMA i.e. kernel not involved in data transfer
- higher performance
- transition in progress ...

GBT test configuration:

GBT test results:

FULL-mode test configuration:

FULL-mode test results:

• investigating scaling problem