22nd Real Time Conference (Virtual)

Development of next-generation timing system for the Japan Proton Accelerator Research Complex

Fumihiko Tamura, Hiroki Takahashi, Norihiko Kamikubota, Yuichi Ito, Naoki Hayashi

J-PARC Center

October 2020

RT2020, F. Tamura

Development of next-generation timing system for the Japan Proton Accelerator Research Complex

Contents

1. Introduction

2. Original timing system

3. Next-generation timing system

4. Conclusion

Japan Proton Accelerator Research Complex (J-PARC)

- Accelerators: 400 MeV linac, 3 GeV RCS, 30 GeV Main Ring (MR)
- Experimental facilities: MLF (n, μ), Hadron hall, Neutrino
- Beam operation started in 2006
- High intensity: 1 MW (RCS), 750 kW (MR)
- A precise and stable timing system is necessary to avoid beam losses and residual activation
 - jitter below 1 ns

J-PARC timing chart

- MR accelerates protons from 3 GeV to 30 GeV at repetition period of 2.48 s (FX) or 5.2 s (SX)
- J-PARC machine cycle defined by MR cycle

J-PARC timing chart

- Linac, RCS running at 25 Hz rep rate: Tick of J-PARC timing
- Four RCS beams injected to MR, others (FX: 58, SX: 126) delivered to MLF
- Beam parameters (intensity, macro pulse width, chopping width, injection painting) different for destinations

J-PARC timing chart

- Role of timing system: to give appropriate instructions to the accelerator devices for various operating conditions
- Continuous user operation / single shot for commissioning / etc...

Categories of J-PARC timing signal

Scheduled timing:

- Defined by the programmed delay from the 25 Hz reference trigger sent from the central control building (CCB)
- Most devices use scheduled timing

Synchronization timing:

- Generated by the accelerator devices for synchronization to the beams
- Linac chopper gate, RCS extraction kicker, MR injection kicker, etc.

We focus on the scheduled timing in this presentation.

1. Introduction

2. Original timing system

Next-generation timing system

4. Conclusion

Scheduled timing

• 25 Hz reference trigger, 12 MHz clock, and Type are sent from CCB to facilities Star configuration: same signal delivered

• Type represents the operation of next 25 Hz cycle

According to type, receivers work as follows:

- Output pulse with programmed delay
- No output
- Continue counting for longer delay beyond reference trigger

RT2020, F. Tamura

Development of next-generation timing system for the Japan Proton Accelerator Research Comple:

According to type, receivers work as follows:

- Output pulse with programmed delay
- No output
- Continue counting for longer delay beyond reference trigger

RT2020, F. Tamura

Development of next-generation timing system for the Japan Proton Accelerator Research Comple:

According to type, receivers work as follows:

- Output pulse with programmed delay
- No output
- Continue counting for longer delay beyond reference trigger

According to type, receivers work as follows:

- Output pulse with programmed delay
- No output
- Continue counting for longer delay beyond reference trigger

Type sequence:

- A type sequence represents operation in a MR cycle
- End code or jump code indicates the end of cycle
- Changing type sequence, accelerator operation is switched
- Special word "S" sent additionally at the beginning of type sequence

Timing transmitter station in the CCB

- High-precision synthesizer and clock generator generate 12 MHz master clock
- Reference trigger generated by counting clocks
- Timing transmitter module sends serialized 32-bit type code prior to reference trigger
 - MSB: special flag
 - Each 8-bit for linac, RCS, MR. 7-bit reserved
- Three signals sent to facilities via fanout and E/O

Timing receiver station in the facilities

- Three delivered optical signals are input to the timing receiver module via O/E
- Receiver module picks up control word from LUT by taking specified 8-bit from the 32-bit type code
- Behaves as the operating principle in previous slide
- 96 MHz delay counter clock from 12 MHz clock by PLL
- Output level converted NIM modules
- Daisy chain possible

Original timing system works nicely

The original timing system working without major problems since 2006. The stable / precise timing system serving the high intensity beam operation.

RCS 1 MW continuous operation demo:

MR beam power reached 510 kW:

Why next-generation system?

Optical component (Finisar v23826) was discontinued, no successors:

O/E, E/O modules are no longer in production and the original system cannot be maintained for longer period, while we have enough spare modules. We started development of the next-generation system from 2016.

1. Introduction

2. Original timing system

3. Next-generation timing system

Conclusion

Design considerations

- Impossible to replace whole system at once. Compatibility to the original system is most important
- ightarrow Popular timing system solutions (MRF, WR) not considered
- Three cables per station is infrastructure burden
- Metal cable between O/E and receiver may pick up noises from pulsed PS or high intensity beam. Receiver hang ups experienced

 \rightarrow High speed serial communication containing three signals on single optical cable

- A set of VME and NIM crates requires space and cost. MR control rooms have limited space (and budget)
- ightarrow Small form factor (PLC) receiver also developed

Configuration

- Yellow: newly developed modules
- New transmitter outputs serialized optical signal containing ref trig, clk, type
 - SFP as optical device
 - All connections are optical
- Optical fanout
- New receiver: VME and PLC. Works same as original
- Also outputs same three signals so that original receivers can be used as is

Configuration

- Yellow: newly developed modules
- New transmitter outputs serialized optical signal containing ref trig, clk, type
 - SFP as optical device
 - All connections are optical
- Optical fanout
- New receiver: VME and PLC. Works same as original
- Also outputs same three signals so that original receivers can be used as is

New transmitter function: shift-jump

- In original system, switching of type sequence is allowed only the end of the type sequence
- "Beam-on" trigger for measurement is stopped when interlock by modifiying LUT by fast reflective memory network
- "Shift-jump" function: according to the jump table for the interlock types, the type sequence is switched so that beam-on trigger is suppressed

High speed serial communication: transmitter

- At each reference trigger, type picked up from type memory
- New transmitter module generates an event every 12 MHz clock
 - Payload of high speed serial communication
- GTP on Xilinx Spartan-6 used
- Serial stream converted to optical signal by SFP module

Protocol

• A sequence: 12 consecutive 8 bit words

- Repetition at 12 MHz
- K28.5 (comma), event (E), 10 bytes data
- 8B/10B encoded, 1.44 Gbps
- All events are used for generation of 12 MHz clock at receiver

	1	2	3	4	5	6	7	8	9	10	11	12
sequence	K28.5	E	D(p1)	D(p2)	D(p3)	D(p4)	D(p5)	D(p6)	D(p7)	D(p8)	D(p9)	D(p10)

Protocol

(1) Null event: sent when idle

	1	2	3	4	5	6	7	8	9	10	11	12
Null	K28.5	D0.0										

E(null)=D0.0 (0x00)

(2) Trigger event

	1	2	3	4	5	6	7	8	9	10	11	12
Trig	K28.5	E(trig)	D0.0									

E(trig)=D1.0 (0x01)

(3) Type event: before trigger

	1	2	3	4	5	6	7	8	9	10	11	12
Туре	K28.5	E(type)	type1	type2	type3	type4	D0.0	D0.0	D0.0	D0.0	D0.0	D0.0

E(type)=D2.0 (0x02)

(4) S event: at beginning of type sequence

	1	2	3	4	5	6	7	8	9	10	11	12
S	K28.5	E(S)	D0.0									
F(C) NO.O	(002)											

E(S)=D3.0 (0x03)

(S) S count event

	1	2	3	4	5	6	7	8	9	10	11	12
Scnt	K28.5	E(Scnt)	Scnt1	Scnt2	Scnt3	Scnt4	D0.0	D0.0	D0.0	D0.0	D0.0	D0.0

E(Scnt)=D4.0 (0x04)

(6) trig count event

	1	2	3	4	5	6	7	8	9	10	11	12
Tcnt	K28.5	E(Tcnt)	Tcnt1	Tcnt2	Tcnt3	Tcnt4	D0.0	D0.0	D0.0	D0.0	D0.0	D0.0

E(Tcnt)=D5.0 (0x05)

• Many reserved events

High speed serial communication: receiver

- On the receiver GTP, Clock and Data Recovery (CDR) is used to decode the 144 MHz clock and data
- 12 MHz clock is generated looking at commas
- Event analyzer extracts trigger, type, and other information
- Clock, trigger, and type are fed into the same circuit as original modules
- As a whole, the new receiver behaves in the same way as the original system

Pitfall: latency of pure GTP is not deteministic at power-up

- Phase of recovered 144 MHz clock different at each power-ups
 - Normal applications for data transfer do not care
- Critical issue for timing system
- Any solutions?

Yes, solution found!

The solution is found in R. Giordano's TNS articles:

- R. Giordano and A. Aloisio, "Fixed-Latency, Multi-Gigabit Serial Links With Xilinx FPGAs," in IEEE Transactions on Nuclear Science, vol. 58, no. 1, pp. 194-201, Feb. 2011
- We appreciate their good work

We implemented fixed-latency logic according to the reference.

194

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011

Fixed-Latency, Multi-Gigabit Serial Links With Xilinx FPGAs

Raffaele Giordano and Alberto Aloisio

Abstract-Most of the off-the-shelf high-speed Serializer-Deserializer (SerDes) chips do not keep the same latency through the data-path after a reset, a loss of lock or a power cycle. This implemontation choice is often made because lived latency energian time a higher precision is achieved with PTP when the latency of the up-link and down-link are constant and equal.

Fixed-latency links also find application in data-acquisition

Overview:

Comma detector and aligner (CDA):

- 10B/8B decoder and CDA are implemented in FPGA fabric, outside of GTP
- Phase offset is measured and fed to aligner
- If offset is even number of UI, RXSLIDE asserted necessary times to adjust phase
- In case of odd number, GTP is reset until the offset becomes even number

With the logic, deterministic latency is realized.

• 10B/8B decoder and CDA are implemented in FPGA fabric, outside of GTP

- Phase offset is measured and fed to aligner
- If offset is even number of UI, RXSLIDE asserted necessary times to adjust phase
- In case of odd number, GTP is reset until the offset becomes even number

With the logic, deterministic latency is realized.

Overview:

Comma detector and aligner (CDA):

- 10B/8B decoder and CDA are implemented in FPGA fabric, outside of GTP
- Phase offset is measured and fed to aligner
- If offset is even number of UI, RXSLIDE asserted necessary times to adjust phase
- In case of odd number, GTP is reset until the offset becomes even number

With the logic, deterministic latency is realized.

Overview:

Comma detector and aligner (CDA):

- 10B/8B decoder and CDA are implemented in FPGA fabric, outside of GTP
- Phase offset is measured and fed to aligner
- If offset is even number of UI, RXSLIDE asserted necessary times to adjust phase
- In case of odd number, GTP is reset until the offset becomes even number

With the logic, deterministic latency is realized.

Comma detector and aligner (CDA):

- 10B/8B decoder and CDA are implemented in FPGA fabric, outside of GTP
- Phase offset is measured and fed to aligner
- If offset is even number of UI, RXSLIDE asserted necessary times to adjust phase
- In case of odd number, GTP is reset until the offset becomes even number

With the logic, deterministic latency is realized.

12 MHz clock jitter measurement by Tek DPOJET

- 12 MHz clock used for reference of 96 MHz counter clock and accelerator digital clocks (LLRF, etc)
- RMS 22 ps and pk-pk 200 ps, sufficiently low
- Trigger jitter similar (not measured by DPOJET)

Next-generation system performance confirmed.

evelopment of next-generation timing system for the Japan Proton Accelerator Research Comple

Current status

- Original transmitter module was replaced with new transmitter in January 2020
- Until now, 12 receiver stations with 36 new receiver modules completed at linac and RCS
- Another 12 receiver stations to be done in this FY
- PLC receiver modules will be installed at new power supply buildings in MR

Conclusion

- J-PARC timing system is designed to fit the operation of the accelerator complex, which has multiple beam destinations
- Original system has been working nicely, while key optical component is obsolete. Next-generation timing system has been developed with emphasis on compatibility
- Next-generation system utilizes high speed serial communication technology. Fixed latency logic is implemented
- Successfully deployed in 2020

Note:

The serial communication framework is based on common technologies. It can be implemented with newer FPGAs. Next-generation system expected to be sustainable.