
RCDAQ - A scalable, portable DAQ system design

Martin L. Purschke

1

What I’ll be talking about

We will be using the RCDAC data acquisition system here in several places at the school

I will go through a number of design principles that have served me well

Will tell you about the basics

I will show you a number of examples to make this more tangible

This is by no means the only or “the best” data acquisition system. People in this room have built

DAQ systems which are in widespead use,

Notably, Stefan’s MIDAS system….

RCDAQ is just what we will be using.

2

Design Goals, also known as Buzzwords

• Modularity

• Data integrity, robustness and resilience

• No exposure of analysis code to internals

• Binary payload format agnostic

• No preferred endianess

• Support for data compression

• Different event types

• Set of tools to inspect / display / manipulate files

• Online monitoring support

• Electronic Logbook support

• OS integration

• Interface to community analysis tools (these days: root and 3rd-party frameworks)

That’s quite a list. Let’s go through and see what all that means
3

Data Formats in general…

One of the trickiest parts when developing a new application is defining a data format

It can take up easily half of the overall effort – think of Microsoft dreaming up the format to store this

very PowerPoint presentation you are in a file. We used to have ppt, now we have pptx – mostly

due to limitations in the original format design

A good data format takes design skills, experience, but also the test of time

The tested format usually comes with an already existing toolset to deal with data in the format, and

examples – nothing is better than a working example

Case in point: Parts of the PHENIX Raw Data Format (PRDF) have their roots at the CERN-SPS,

and the Bevalac Plastic Ball experiment in the 80’s – that’s a solid “test of time”

4

Resilience and error recovery

Imagine a data format where one bit error, or one error in some length field, in the data renders the

entire file unreadable

Obviously not a good design – you will have such errors, corrupt tapes, recovered disk files, and you

cannot allow to lose a significant portion of your statistics

Corrupt data is far more common than you think!

Data can be corrupted by the storage medium

Data structures can also be corrupt from the get-go by some bug in the DAQ

“Resilience in depth” – any corrupt entity must be able to be skipped, the remainder of the data

recovered

You must also be able to account for what was lost

“You must be able to erroneously feed your mail file to your analysis. It shouldn’t find events, but it

shouldn’t crash, either.”

5

How did we implement this?

This is a storage-level

layer, usually invisible

A variable number of

Events per buffer

Data structures from

individual detectors

The error recovery works on the smallest corrupted entity, a packet, an even, or a buffer.

6

Error Recovery

A good amount of the physical storage concept is derived from what was the main storage medium

back in the 80’s and 90’s – tapes

Of course, in 2016 , we still write the majority of our data to tapes

Useful leftovers from the days of direct tape reading:

Our Buffers are a multiples of 8Kb “records” – tape drives used to write physical chunks of 8Kb

Got a corrupt data? Skip 8Kb records until you find the start of a new buffer. It must start on a record

(8Kb) boundary. Without that constraint, you have no chance to find that.

Inside buffers, parts of the data of an event can be corrupt but the “outer” structure intact – skip event

Inside an event, the data structure from a detector can be corrupt – skip this and take a (user)

decision whether or not to accept the event

At any time, you are in charge of dealing with the situation in a manner that suits your analysis.

7

No Preferred Endianess – what does that mean?

This is less of an issue today as it was 10 years ago when we had a lot of Motorola 68K and

PowerPC CPUs in front-ends (all big-endian) and Intel/AMD for analysis (all little-endian)

Endianess – the order how a 2 or 4-byte variable is stored

int i = -64 -> 0x FF FF FF C0

Little Endian – least significant bit is at lowest address

Files with different endianess with a

-64 1 sequence

Variables from files with the wrong

endianess need to be byte-swapped

That can be time-consuming!

Memory location Little-endian Big-endian

Offset +0 C0 FF

+1 FF FF

+2 FF FF

+3 FF C0

Have the DAQ write in its native endianess and let the analysis software do the byte-

swapping as needed. Don’t waste time with that in the DAQ! 8

Modularity and Extensibility

No one can foresee and predict requirements of a data format 20 years into the future.

Must be able to grow, and be extensible

The way I like to look at this:

FedEx (and UPS) cannot possibly know how to

ship every possible item under the sun

But they know how to ship a limited set of

box formats and types, and assorted weight

parameters

Whatever fits into those boxes can be shipped

During transport, they only look at the label on the box, not at what’s inside

We will see a surprisingly large number of similarities with that approach in a minute

“packets”

9

“Binary payload agnostic” – what is that?

Most of the “devices” we read out provide their data in some pre-made (and usually quite

good) compact binary format already. Usually done in some FPGA.

Actual formatting/packing/zero-suppression in the CPU is rare these days

All you want to do is to grab the blob of data, stick it into a packet, put a label (packet header)

on that says what’s in it, done.

That is literally all we do to the data

From that point forward, the DAQ does not care. The “FedEx” approach – they ship boxes, we

ship packets.

More generally: Usually we store data from our readout devices, but we must be able to store

literally anything in our data stream.

Want to store an Excel spreadsheet? A text file? A jpeg image? Shouldn’t cause a problem.

If you think ”why would one want to do that!”, just wait a few minutes.
10

Example: CAEN’s V1742 format

We just take that

blob of memory,

“put it in a box”,

done.

The analysis

software takes

care of the

unpacking and

interpretation later

Just grab it. Don’t

waste time here.

11

How do we accomplish that?

The “box” / packet has what I call “envelope information” – a header describing what’s inside

Word 16 bit 16 bit

0 Length

1 Packet id Swap unit

2 Hitformat Padding size

3 Reserved reserved

4 +

DATA

n+4 padding

The hitformat is an enumerated

value that determines how the data

needs to be unpacked

In PHENIX I have about 200 such

formats defined

The packet id uniquely identifies

what piece of a given detector this

packet holds, or the data from

which device

The order of the packets within an event is irrelevant – a “mini database” – allows to change

the read order without breaking anything

Padding – we pad the packet as needed to remain 128-bit aligned
12

Data Encapsulation

The unpacker/decoder selected through the hitformat shields the user code from the changing

internals of the encoding

The only constant is that the same channels – usually a readout board that we call FEM, Front-

End Module – feeds its data into a packet with a never-changing packet id

The packet id identifies a FEM, and a piece of detector “real estate”

It is common to refer to a given FEM by its packet id (“we had a problem with 4033 last night”)

But: how the data are encoded changes over time.

We do not want our analysis code to break because of that!

The packet id tells you what is stored in the packet

The hitformat says how it is encoded

I can change the encoding for a more efficient one at any time; I just tag it with a new hitfomat

(and implement the new decoder acting on that format)

No user software will break!
13

Data Encapsulation – changing encoding

Example: our Muon Tracker delivers 5 10bit values per channel.

Until 2006 or so, we would stick each 10bit value into a 16bit word, so 100 channels => 500

values => 1000 bytes

Then we would use 4 bytes to store 3 values, so 100 channels occupy 750 bytes now

Does the analysis code need to change? No.

A new hitformat selects a different unpacker / decoder for that new format which delivers the

decoded data just as before

All invisible to the user code - no code can break because of an encoding change.

The threshold to change the encoding isn’t super-high because of that

We commissioned a new detector in 2014 and are on its 3rd hitformat because we found that

we’d need addt’l information to better understand the detector. Whatever existed still works

as before.
14

A real PHENIX event…

This is an actual PHENIX event with the full detector

3827 packets in total in this event
15

$ dlist /a/eventdata/EVENTDATA_P00-0000459344-0000.PRDFF

Packet 14001 52 0 (Unformatted) 714 (IDGL1)

Packet 14007 10 0 (Unformatted) 716 (IDNTCZDC_LL1)

Packet 14002 9 0 (Unformatted) 701 (IDBBC_LL1)

Packet 14009 14 0 (Unformatted) 717 (IDGL1_EVCLOCK)

Packet 14011 13 0 (Unformatted) 914 (IDGL1PSUM)

Packet 8180 21 0 (Unformatted) 1508 (IDEMC_FPGA3WORDS0SUP)

Packet 8165 42 0 (Unformatted) 1508 (IDEMC_FPGA3WORDS0SUP)

Packet 8166 48 0 (Unformatted) 1508 (IDEMC_FPGA3WORDS0SUP)

. . .

Packet 25121 83 0 (Unformatted) 425 (IDFVTX_DCM0)

Packet 25122 198 0 (Unformatted) 425 (IDFVTX_DCM0)

Packet 25123 99 0 (Unformatted) 425 (IDFVTX_DCM0)

Packet 25124 46 0 (Unformatted) 425 (IDFVTX_DCM0)

Packet 21351 356 0 (Unformatted) 1121 (IDMPCEXTEST_FPGA0SUP)

Packet 21352 319 0 (Unformatted) 1121 (IDMPCEXTEST_FPGA0SUP)

Packet 21353 238 0 (Unformatted) 1121 (IDMPCEXTEST_FPGA0SUP)

Packet 21354 323 0 (Unformatted) 1121 (IDMPCEXTEST_FPGA0SUP)

I haven’t really mentioned the word “DAQ” yet…

I want to introduce you to my portable DAQ system, “rcdaq” (“really cool data acquisition” – I

have a way with names)

What’s so cool about it?

The “real” PHENIX DAQ occupies a space about the size of a squash court -- rcdaq is highly

portable, lightweight, etc etc – good for ~ 50,000 channels or so, not millions

We use it for R&D, detector commissioning, test beams, what have you

It writes data in the PHENIX format, so the data you take can be analyzed like the real thing

It’s a godsend for our students, who usually start out with some test beam data, or work on a

detector - the same data format makes for a smooth transition to physics data later

Rcdaq is way more flexible than the big real DAQ and runs on far less demanding hardware

It actually runs on a Raspberry Pi (you can read out Stefan’s DRS4 board and some other

USB devices)

16

RCDAQ

I’m using my creation to show how I implemented the aforementioned principles and some

other points

It can read thousands of channels on a fast machine, but is

lightweight enough that it runs on a Raspberry Pi

Let me start by asserting that something that just “reads out your detector” does not qualify as

a data acquisition system yet – it lives and dies by the amenities it has to offer to really help

with your needs.

So what did I implement?

17

The High Points

I decided to make each interaction with RCDAQ a shell command. There is no “starting an

application and issuing internal commands” (think of your interaction with, say, root)

RCDAQ out of the box doesn’t know about any particular hardware. All knowledge how to

read out something, say, the DRS4 eval board, comes by way of a plugin that teaches

RCDAQ how to do that.

That makes RCDAQ highly portable and also distributable – PHENIX FEMs need commercial

drivers for the readout; I couldn’t re-distribute CAEN software, etc etc

RCDAQ does not have configuration files. (huh? In a minute).

Support for different event types (one of the more important features)

Built-in support for online monitoring

Built-in support for an electronic logbook (Stefan’s Elog)

Network-transparent control interfaces
18

Everything is a shell command…

One of the most important features. Any command is no different from “ls –l“ or “cat”

That makes everything inherently scriptable, and you have the full use of the shell’s

capabilities for if-then constructs, error handling, loops, automation, cron scheduling, and a

myriad of other ways to interact with the system

Nothing beats the shell in flexibility and parsing capabilities

You can type in a full RCDAQ configuration on your terminal interactively, command by

command (although you usually want to write a script to do that)

In that sense, there are no configuration files – only configuration scripts.

This is quite different from “my DAQ supports scripts”!

I do not want to be trapped within the limited command set of any application!

As shell commands, the DAQ is fully integrated into your existing work environment

19

Measurements on autopilot through scripting

20

Calorimeter

Module

PMT

X-Y step motor

Light Fiber

You want to run measurements where you step through some values of a parameter completely on autopilot

Here: Move a light fiber with 2 step motors, take a run for each position w/ 4000 events

50 x 25 = 1250 positions (you really want to automate that)

Let it run overnight, come back in the morning, look at the data

The Script

21

25 positions in y

move the Y motor

50 positions in x

move the x motor

next x

next y

#! /bin/sh

STARTPOSX=0

STARTPOSY=9900

INCREMENTX=200

INCREMENTY=-200

CURRENTPOSY=$STARTPOSY

for posy in $(seq 25) ; do

quickmove.sh $CURRENTPOSY 2

sleep 5

CURRENTPOSY=$(expr $CURRENTPOSY + $INCREMENTY)

CURRENTPOSX=$STARTPOSX

for posx in $(seq 50) ; do

echo "moving to $CURRENTPOSX"

quickmove.sh $CURRENTPOSX 1

sleep 5

CURRENTPOSX=$(expr $CURRENTPOSX + $INCREMENTX)

done

done

The DAQ operation becomes an

integral part of your shell environment

Automatic end after 4000 events

start the DAQ

rcdaq_client daq_set_maxevents 4000

rcdaq_client daq_begin

wait_for_run_end.sh

Setting up and reading out a DRS4 Eval board

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 885

$ daq_open

$ daq_begin

wait a while…

$ daq_end

You see, each interaction is a separate shell command

“daq_open” is actually an alias to “rcdaq_client daq_open”, etc

When there is a client, there is a server…

And that brings us to the choice of technology I used in RCDAQ.

22

Client-Server Interaction

Think of your session when you use the root package for your analysis

You give commands, use GUIs, and it does what you want

However, you have the exclusive access to your session. No one else (or you in another

terminal) can interact with the same root session. That goes for your usage of Word,

PowerPoint, etc as well.

In a DAQ, this is not what one wants!

You want more than one “entity” to be able to control your DAQ. Think GUIs, the command

line, cron jobs, you name it

Short of control, you want other processes to be able to extract information – extract and

display the event rate, the run number, the open file name, etc etc

You want a way for more than one process to be able to connect to your DAQ concurrently

The technology I chose is the Remote Procedure Call, RPC
23

RPC

• Let me first say that there is no shortage of client-server protocols

• CORBA, PVM, there are many others

• The Remote Procedure Call is, in my book, the easiest to use and available everywhere

• Widely established open standard (RFC 1831) for remote execution of code from a client

• Makes it look like a local function call, but the function executes on a server

• Originally meant for off-loading time-consuming functions to a beefy server. We use it to

set values and trigger actions in the server.

• The ubiquitous NFS (network file system) is based on RPC, it is available virtually

everywhere. Linux. MacOS. Android. Windows. Everything.

• It is a network protocol, so client and server don't have to be on the same machine, can

have DAQ and control machine in different rooms (or as far apart as you like as long as

the connection traverses the firewalls).
24

The RCDAQ client-server concept

RCDAQ server

Network USB PCIe

HardwareHardware Hardware

RCDAQ Client

Command line

RCDAQ Client

Command line

RCDAQ Client

scripts

RPC

Protocol

This allows an arbitrary number of

processes to interact with RCDAQ

concurrently

$ rcdaq_client load librcdaqplugin_drs.so

The RCDAQ server does not accept

any input from the terminal. All

interaction is through the clients.

25

Why do we need multiple clients?

They allow you to run any number of GUIs or interact from the command line

You can enter RCDAQ commands from any terminal that can reach the DAQ machine

Say you fix something at your setup – you can control the remote DAQ from your laptop that

you brought with you for the access

Also remember that the controls travel through the network

This is the FermiLab Test Beam Facility. It took us about

10 minutes each time to access our setup. The ability

to control the DAQ from the hut and see that everything

works is really important. By the time you end the

access, you know everything is ok.
26

Some standard devices implemented in RCDAQ

PET Scanner for

Mammography /

Rodents (3072 LYSO

crystals)

RCDAQ

“TSPM”

PET Scanner

Read out with 4 “Timing and Signal

Processing Modules” (TSPM)

DRS4 Eval board

“USB Oscilloscope”

The CERN RD51

SRS System

There are more not shown…

PCIe

The CAEN V1742

waveform digitizer

27

Think of a test beam setup (or your Lab setup) for a moment

In the “real” experiment that’s running for a few years (think PHENIX, ATLAS, what have you)

you are embedded in an environment that supports all sorts of record keeping

We have the PHENIX run database as an example – we log “everything”, AND there’s

infrastructure and support so most people know how to get at it.

I’m not disputing the need for a database, I’m saying that a test beam or your test lab needs a

different kind of “record keeping support”

What was the temperature? Was the light on? What was the HV? What was the position of that

X-Y positioning table?

A database allows you to search for runs with certain properties. But capturing this information

in the raw data file is more flexible and the data cannot get lost

I often add a webcam picture to the data so we have a visual confirmation that the detector is in

the right place, or something

A picture captures everything…

28

Remember our concept of being

payload agnostic?

Different Event Types

You would think of the DAQ as “reading your detector”

Very often, it is necessary to read different things at different times.

Let’s go to the CERN-SPS (or the BNL AGS) for an example:

29

Data Events

Read your detector

channels, ADCs,

TDCs...

Spill-On event

Read and clear scalers

Flush buffers

Spill-Off event

Read and clear scalers

(allows spill intensity-

based corrections)

Begin-run

event

End-run

event

extraction

acceleration

SPS or AGS

In addition to your data, you need information about the spill itself – each one is different

You need to make intensity-dependent corrections on a spill-by-spill basis

So you put some signals on scalers and get an idea about the intensity, dead times, microstructures, etc

“spill”

29

Those Different Event Types and what they are good for

Those different event types are the key to “logging everything”

Remember: Different event types read different things

And different event types “happen” at different times

Example: Each time we start a run, RCDAQ generates a “begin-run event”

(ditto for the end of run – end run event)

The begin-run event (only one such event per run) is the perfect place to store “everything” you

need to know about the data later in the analysis (like ”what was the position of my

detector?”)

(and lots of stuff you only look at when something’s wrong – think of it as a plane’s black box)

30

Remember this?

This was our typed-in example from before

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

31

A Setup Script

Now you got yourself a setup script as I advertised before, call it, say,

“setup.sh”

#! /bin/sh

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

Make it executable and you can re-initialize your DAQ each time the same way

32

Capturing the setup script for posterity

We add this very setup script file into our begin-run event for posterity

#! /bin/sh

rcdaq_client create_device device_file 9 900 ”$0”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

So this gets added as packet with id 900 in the begin-run

It’s not quite right yet - $0 is usually just “setup.sh”, so the server may not be able to find it.

We need the name with a full path!

This “device” captures a

file as text into a packet

This “9” is the event

type of the beg-run

And this refers to the

name of the file itself

33

Expanding the $0 to a full filename

The 3 lines expand the file to a full filename

#! /bin/sh

D=`dirname "$0"`

B=`basename "$0"`

MYSELF="`cd \"$D\" 2>/dev/null && pwd || echo \"$D\"`/$B”

rcdaq_client create_device device_file 9 900 "$MYSELF”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

Almost there…

34

… and the final touch

We clear out any pre-existing device definitions first. We also add some comments as

documentation what we are doing here

#! /bin/sh

this sets up the DRS4 readout with 5GS/s, a negative

slope trigger in channel 1 with a delay of 140

D=`dirname "$0"`

B=`basename "$0"`

MYSELF="`cd \"$D\" 2>/dev/null && pwd || echo \"$D\"`/$B”

rcdaq_client daq_clear_readlist

rcdaq_client create_device device_file 9 900 "$MYSELF”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

35

More stuff

Most people work from my example scripts that ship with RCDAQ, so it’s in in most files…

rcdaq_client daq_setrunnumberfile $HOME/.last_rcdaq_runnumber.txt

if ! rcdaq_client daq_status -l | grep -q "CAEN VME1718 Plugin" ; then

echo "VME1718 plugin not loaded yet, loading..."

rcdaq_client load librcdaqplugin_caen_vme.so

fi

Figure out if a plugin is loaded

and load it if not

Make run numbers persistent across cold-starts

You see the beauty of setup scripts with tests, error handling, etc

36

More special devices

We have seen the device_file, which captures the contents of a file into a packet. What else is

there?

device_filenumbers – the “file” saves the contents as text, which is not always easy to work

with. Device_filenumbers looks for lines with numbers by themselves on a line, and stores

them as numbers. In your analysis, it’s much easier to work with

device_command - no packet generated, but an arbitrary command gets executed. (This is

one of the most powerful concepts).

device_file_delete – as device_file, but the file gets deleted after inclusion

device_filenumbers_delete – you get the idea

37

More things from a previous setup

Here you see two scripts executed which reach out to the

positioning system and reads back the motor positions, and

capture an image from a webcam

#add the position information

rcdaq_client create_device device_command 9 0 /home/eic/struck/getmotorpositions.sh

rcdaq_client create_device device_file 9 910 /home/eic/struck/positions.txt

rcdaq_client create_device device_filenumbers 9 911 /home/eic/struck/positions.txt

add the camera picture

rcdaq_client create_device device_command 9 0 "/home/eic/capture_picture.sh

/home/eic/struck/cam_picture.jpg"

rcdaq_client create_device device_file_delete 9 940 /home/eic/struck/cam_picture.jpg

We include the generated “positions.txt” files both as text as as numbers in 910 and 911

38

eicdaq2 ~ $ ddump -O -p 910 -t 9 ZZ48_0000001600-0000.evt

8031

8377

eicdaq2 ~ $ ddump -O -p 910 -t 9 ZZ48_0000001601-0000.evt

8031

8393

eicdaq2 ~ $ ddump -O -p 910 -t 9 ZZ48_0000001602-0000.evt

8031

8409

eicdaq2 ~ $ ddump -O -p 910 -t 9 ZZ48_0000001603-0000.evt

8031

8425

We are

scanning in y

direction here

File Rules

The output files are generated according to a file rule that you can set

This is just a plain “printf” control string that takes two numbers

Default is rcdaq-%08d-%04d.evt

Takes run number and “file sequence number” - the latter is for rolling over the file at a

predetermined size so any one file doesn't get too large

For example for “run 1234” :

$ printf "rcdaq-%08d-%04d.evt\n" 1234 0

rcdaq-00001234-0000.evt

You can change the rule at any time.

39

GUIs

All GUIs are stateless. You can run any number of them concurrently

You can click “begin” in one, click “end” in the other, and mix GUIs with

command line interactions.

rcdaq has web controls that allow you to control it from your smartphone

or your tablet

40

Automated Elog Entries

RCDAQ can make automated entries in your Elog

Of course you can make your own entries, document stuff, edit entries

Gives a nice timeline

and log

41

Wrapping up

Almost every week I’m learning of a

new ingenious way to use this

aspect for something cool

A group needed to test a few

thousand pads on a plane if they

a) work and b) are connected

right.

Inject charge into the pads one by

one... but you can't take your

eyes (or the probe) off the pad

plane or you lose your position

They came up with…

For the remaining minutes, let me harp

on the virtues of “everything is a

shell command” a bit more

42

Summary

I used RCDAQ to show some design principles

I want to re-iterate that there are many fine DAQ systems “out there”

We have seen the virtues of shell-command only interactions

Learned about Event Types for different cool things, especially the begin-run

We learned why we want stateless GUIs and commands, and be network-transparent

We didn’t have time to talk about the online monitoring, but it’s there

Also, there’s still quality time during the school

A portable DAQ system – in a minute you will see me carry it back to my seat.

43

This page is intentionally left blank

44

Data Compression

We found that the raw data are still gzip-compressible after zero-suppression and other data

reduction techniques

Early on, we had a compressed raw data format that supports a late-stage compression

45

A device_filenumber_delete example

You may have wondered what this is for…

Say you want to inject something into the datastream every 5 minutes or so. In this example,

a temperature reading

If a file isn’t there, no packet is generated

So we set up a cron job that reaches out to temperature-sensing board and creates a file

“temperatures.dat” every 5 minutes.

In this way, we capture the file and numbers only in one event, then it’s gone

rcdaq_client create_device device_file 1 4001

/home/hcal/drs_setup/temperatures.dat

rcdaq_client create_device device_filenumbers_delete 1 4002

/home/hcal/drs_setup/temperatures.dat

This was a setup testing Silicon Photomultipliers, so the temperature stability is important

46

The Temperatures over time

$ ddump -O -n 1000 -p 4002 -g -d \\

/data/hcal/cosmics/cosmics_0000000115-0000.evt | \\

grep '0 |' | awk '{print $4, $6, $NF}'

25750 26312 24125

25750 26312 24250

25750 26312 23875

25750 26312 24187

25750 26312 23937

25750 26312 24312

25750 26312 24187

25687 26312 24000

25750 26312 24312

25750 26312 23875

25750 26312 24375

25687 26312 24125

25687 26312 24187

25750 26312 24062

25750 26312 24187

25687 26250 24187

25750 26312 24312

. . .
47

48

