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1. From conventional delivery technique 

to pencil beam scanning 

 

2. Advantages of pencil beam scanning 

 

 

3. Fast scanning possibilities with PSI Gantry 2 

 

 

4. Organ motion and mitigation techniques 

 

 

5. Implementation of highly dynamic beam delivery 
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Bragg peak of charged particles  

Page 3 

• Charged particles have defined range 

in  matter depending initial on energy 

• Maximum energy loss before particle come 

to rest → Bragg peak 

• Clinical use already suggested by  

Robert R. Wilson in 1946: 

 

 

 

 

 

 

 
 

 

 

Wilson, Radiological Use of Fast Protons,  

Radiology, 47:487-491 (1946) 
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Beam size: 1 mm s 

Simulation 

Dose distribution in water
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Beam size: 3 mm s 

Simulation 

Solid scintillator 

Measurement 
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Irradiation of a deep seated tumour with 
conventional (photon) and proton therapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Better dose conformation to target / tumour 

Less dose to healthy tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combination of different 

field directions 

→ use of gantries 
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Main parts of a particle treatment facility 
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 Accelerator – charged particles source 

 Beam transfer lines to treatment areas 

 Fixed beam line 

 Gantry – rotating beam line 

©IBA 
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Original beam shaping to the target with 
mechanical devices (passive scattering) 

• Proton treatments started with passive 

dose shaping (1960’s, Harvard cyclotron) 

 

 

 

 

 

 

 

 

 

Rotating wheel 

• Fast (~ 100ms/cycle) SOBP creation 

Collimator (field specific) 

• Lateral conformation to target 

Compensator (field specific) 

• Conform distal fall-off to target 

 

Double contoured 2nd scatterer 

• Increase efficiency by 2nd scatterer 

that flattens center of field 

 

 

 

 

 

 

• Extra low-Z material to compensate 

energy loss at edges 

• Today predominant 

technique for passive 

scattering 

Range 
modulator wheel 

Scatterer 

Target 

Patient Collimator 

Compensator 

Simple concept but 

complex practical realisation 



Example of scattering beam line at PSI: 
OPTIS2 - treatment of eye tumours (1984-) 
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• Treatment of uveal melanomas 

 

• Double scattering system 

 

• Treatment of ~250 patients/year; 

6500 patients in total 

 

• 5 year local tumour control rate: >98%  

 

• 25% of all eye irradiations worldwide 

were performed at PSI 

 

• Vision can be preserved in many cases 



• Protons, carbon and helium ions; pions 

 Bragg Peak, fragmentation 

 High ↔ Low LET (Linear Energy Transfer) 

 RBE > 1 (Radio-Biological Effectiveness) 

 Magnetic rigidity of  beam 

3x larger for carbon than protons 

• Patients treated with: p: 150’000, 

C: 22’000, He: 2000, p-: 1000 (www.ptcog.ch) 

 

Other charged particles? 
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©HIT 

Fokas et al. 2009, Biochimica et Biophysica Acta 1796 2 



 

 

 

 

 

 

 

 

 

• 590 MeV, 20 mA protons on pion production target 

• 60 concentric pion beams focused in one spot 

→ Pion ‘spot scanning’, patient was moved in x, y, z  

→ Development of 3d-inverse planning 

• Most advanced facility, 2 installations at other places 

• Moderate clinical success: 

 Large spot size (5x larger than protons) 

 No benefit from high-LET  

 

 

Piotron (PSI): pion therapy 1980 – 1993 
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From passive scattering to 
active pencil beam scanning 
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• Charged particles can 

be directed by electro-

magnetic fields 

 

• Experimental set-up to 

demonstrate technical 

feasibility of scanning 

with protons (1990) 

 

• Horizontal beam line: 

 Beam scanning in only 

one direction 

 Rang shifter for 

energy modulation 

 

• Similar developments 

also at GSI 

 

Pencil beam Depth scanning Lateral scanning 



Dynamic pencil beam scanning on Gantry 1 
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• PSI Gantry 1 (1996): 

Implementation 

pencil beam scanning 

 

• Very compact (r = 2m) 

design due to 

eccentric rotation 

 

• Step-and-shoot 

scanning 
 

• Elements of scanning: 

Dose Monitor + Kicker magnet 

 100 ms reaction time 

x Sweeper magnet 6 ms/step fast 

y Range shifter 100 ms average 

z Patient table 1 cm/s slow 



Main benefit of pencil beam scanning 
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• Scattering with compensator 

has a fixed range (SOBP) per field 

 Scanning avoids unnecessary 

100% dose to the healthy tissues 

 Especially relevant for large and 

irregular targets 

 

• No patient specific hardware needed (collimator / compensator) 
 

• Scanning can easily deliver non-homogenous energy layers: 

 Optimize dose distribution 

 Biological targeting: Different 

dose level within the target 

 Improved planning flexibility 

with Intensity Modulated 

Proton Therapy IMPT 

Scattering Scanning 

Non-homogeneous layer Homogeneous layer 



• Each single dose field delivers non-uniform dose field 

• Uniform dose in target by superposing all field 

• Better dose conformation for complex target geometries 

• IMPT is only possible with spot scanning technique! 

Better dose distributions with 
Intensity Modulated Proton Therapy (IMPT) 
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4 field IMPT dose plan 

F1 

F2 F4 

F3 

Tony Lomax, PSI 
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Pencil beam scanning requires high computer 
power 

• Spot grid distance ≤ 5 mm 

Target with 1 l: ≈10’000 Bragg-Peaks 

• Optimization algorithm: c2 

• Constraints on dose to target and 

critical organs 

• No unique solution, many solutions 

with same dose distribution 

(Degeneracy) 

 

• The availability of sufficient computing 

power was a necessary prerequisite 

for the development of PBS 

• Still today, there are limitations: 

 Definition of field direction: by hand 

 ‘Simple’ analytical beam models 

(1 or 2 Gaussian profile) 

 No real-time optimization  

T. Lomax, PSI 



• Uniform fluence of spots: 

Error-function 

• Penumbra (80% - 20%): 

 Error function: 1.7s 

 Gauss: 1.1s → 1.5x 

penumbra 

 

• PBS delivery: Flexibility in  

 Beam intensity 

 Spot position 

• The dose lateral fall-off can 

approach the fall-off of the 

original Gaussian spot 

 

• Only optimization unfolds 

the full potential of PBS. 

“Edge enhancement” capability of PBS 
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Current pencil beam algorithms: 

• Analytical model 

• Fast computational 

• Compromised accuracy in presence 

of inhomogeneity 

 

Dose calculation by MC 

• Range dilution due to multiple 

Coulomb scattering 
A Tourovsky et al 2005 Phys. Med. Biol. 50 971 

• Include relative biological 

effectiveness (RBE) 

• Long computation time (hours) 

 

Developments towards GPU-based Monte Carlo treatment planning 

optimization 
Yongbao Li et al 2017 Phys. Med. Biol. 62 289 
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Increasing dose calculation accuracy with MC 
simulation 

 

 

 

 

 

 

 

 

 

 

 

 
Barbara Schaffner et al 1999 Phys. Med. Biol. 44 27 

 



Number of proton gantries in clinical operation separated by delivery technique 

• About 10 new gantries per year 

• All new systems are PBS only 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on: Meer et al., Mod. Phys. Lett. A 30 (2015) 

PBS was clinically accepted during last 10 years 
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1st hospital 
installation 
Loma Linda 

1st commercial PBS 
(Houston, Hitatchi) 

Gantry 1 
PSI, PBS 



~70 particle therapy centres in operation 
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Scattering Scanning  Heavy ions Future centres 

end of 2016, based on data from https://www.ptcog.ch/ 



PSI Gantry 2 at PROScan: 
Clinical operation and R&D platform 
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Gantry 1 

Gantry 3 

OPTIS2 
Cyclotron 

Gantry 2 



• Orthogonal set of sweeper magnets 

 Beam deflection up to 2 cm/ms 
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Gantry 2 at PSI: 
Fast beam scanning 

• «Up-stream» scanning  

 Parallel beam 

 Smaller gantry radius 

 … but larger (heavier) dipole 

• Achromatic beam optic 

• Nozzle with 

 Dose / position monitor 

• Start clinical operation 2013 

 

 3.2 m 

 2008 

Scanner Magnets 



• Superconducting coil (liquid helium) 

• 250 MeV / up to 1 mA beam 

• Operating since 2007 

• Fast beam intensity modulation 

with vertical deflector 

 Electrostatic beam deflection 

inside accelerator (~50μs) 

 ~1 kV to suppress beam 
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Cyclotron COMET: 
Fast intensity modulation 



• Latency of beam switch-of results 

in extra dose (proportional to 

beam current) 

 

• Subtraction of predicted extra 

dose on each planned dose 

 

• No correction possible if latency 

longer than delivery time 

 

Adapt beam current (lower) for each 

dose spot 

 Improved dose distributions 

 Insignificant longer treatment time 

 

 

• In clinical operation since 2017 (C. Bula) 

 

Dynamic beam current control in discrete spot 
scanning: Close interaction with accelerator 
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A mayor challenge in PBS: 
Moving targets / organ motion 
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With motion Static 

• Interplay effect between beam delivery 

sequence and organ motions destroys dose 

homogeneity   

• Mitigation techniques: 

 Deliver dose multiple times (Rescanning) 

 Patient hold his/her breath (Breath-hold)  

 Irradiation only in exhaled phase (Gating) 

 All approaches require fast beam delivery 

 

 

 

 

 

 

 

 

 



• Anthropomorphic phantom with lung tumour 

and tissue equivalent materials (bone, skin, lung) 

• Simulation of different breathing parameters  

• Rescanning to minimize motion interferences 

→ Dose homogeneity can be recovered 

Experimental validation of rescanning  
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Static 

100% 

-5% 

+5% 

+10% 

-10% 
Motion, 1 cm 8x rescanning 5x rescanning 2x rescanning 

Tumour with insert for dose 
measurements with film 

R. Perrin, 
PSI 

3 field plan 



Beam gating 

 

 

 

• Breathing is externally monitored  

• Irradiation only during defined 

window (e.g. exhale phase) 

• Longer treatments 

• Interaction with dose delivery 
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Gating and Breath-hold 

Breath-hold 

• Patient actively 

hold his breath 

• Irradiation only 

during breath-hold 

window 

 

Benefit: 

• Dose application in 

quasi-static condition 

• Efficient irradiations 

 

• Attractive if dose can be delivered  

to target in < 10s 

 

 

 

Breath-hold 

B
ea

m
 o

n
 Breathing cycle 

Optical system from NDI Inc. 

G. Fattori, PSI 

→ Fast dose delivery is essential for both techniques  ← 



• Active corrections in the beam delivery to follow the track of the tumor: 

 Lateral corrections (Dx, Dy) 

 But also energy corrections (Dz) due to tissue inhomogeneities 

• Many (unsolved) issues: 

 How to detect motion? (Correlation between internal tumor 

movement and external surrogate) 

 Tumor deformation? → Online dose adaptation 

 Density changes proximal to tumor 

(Rib bones before lung tumor) 

• A lot of expertise developed at GSI 

Motion mitigation with target tracking? 
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Beam 

Target at times ti 

Bone 
Dz 

Dx Dy 

C. Bert, GSI 
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Advanced scanning modes 

 

 

 

 

 

 

 

Discrete spot scanning (Gantry 1) 

• Switching off the beam after each spot 

• Dead time per spot ~3 ms. 

 10’000 spots → 30 s dead time, 

scales with number of rescans! 

 

Raster – Scanning 

• Beam-on from spot to spot position 

• Transient dose: Limiting factor 

• Today commercial default 

 

 

 

 

 

 

 

Continuous line scanning 

• Paint lines with intensity modulation 

• Minimize dead time 

• Optimize rescanning capability 

 

Contours scanning (?) 

• For optimizing repainting and lateral 

fall-off (difference Gaussian to error-

function) 

 



 

 

 

 

 

 

 

 

 

 

 

 

• Suppress beam with vertical deflector 

• Wasting protons, hence less efficient 
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Line scanning: Intensity vs. speed modulation 

 

 

 

 

 

 

 

 

 

 

 

 

• Modulate sweeper scan speed 

• Work with maximal proton current 

• Problem: Painting low dose profiles 
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Const. speed 

Constant 
intensity 

 Use primarily speed modulation and 

where necessary intensity modulation 



Therapy Control System (TCS): 

 Therapy Delivery System (TDS) 

 Therapy Verification System (TVS) 

 

• VME system with MVME6100 

 

• Therapy plan with spot sequence is 

delivered to both systems 

 

• Independent control of and 

verification of actuators 

(redundancy and diversity) 

 

• TVS or TDS can raise interlock 

 

Therapy control system architecture 
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Scanning Delivery System (SDS) for continuous 
scanning 
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• Synchronous control  of fast actuators:  

 Magnet current (Sweeper magnets, x/y) 

 High-voltage (Deflector plate, I) 

 

• Delivery table with pre-calculated values 

are downloaded into an FPGA 

• FPGA interpolates data in real time and 

send set-point to actuator with 100 kHz 

 

• Realised on FPGA-PMC card of TDS 



• Feedback loop based on dose monitor in 

front of patient controls beam current 

• Large system delay (~150 us): 

 Particle acceleration / transport 

 Dose measurement (charge collection) 

• Advanced controller with smith predictor 

 „Dead-time compensator“, predicts plant 

output P(s) using a plant model G(s) 

 Controller C(s) designed without delay 

• Implemented on FPGA of  SDS 

 Runs at 100 kHz 

Accurate beam current regulation with 
improved controller design 
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Plant model With measured data 

P. Fernandez, PSI 



Comparison on scintillating screen: 
Spot scanning vs. Continuous scanning 
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Discrete spot scanning 

Spot weights: 

106 to 108 protons / spot 

 
Line scanning 

Scan speeds: 

0.01 to 1.00 cm/ms 
 

 

Measured dose profile 

with strip chamber 

in nozzle 

 spot scanning 

——— line scanning 



Scanning Verification System SVS for 
continuous scanning: Concept 
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• Level 1: 

Real-time monitoring during the application of a line to prevent radiation incidents 

 

• Level 2: 

Online verification after the application of a line to assess and validate delivery 

accuracy 

 

time axis  

beam on  

beam off  

Level  1:  
rea l - t ime ver i f icat ion  

Level  2:  
onl ine  ver i f icat ion  

 

continuous super- 

vis ion of beam 

current and posit ion  

 

val idation of  

the integral  

dose profi le  



Scanning Verification System SVS for 
continuous scanning : HW implementation 
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• Sensor data is sampled with detector specific 

electronics DSE 

• Serializer board (SB) transmit data over optical 

link (2.5 GBit/s) to FPGA every 10ms 

• Verification table error band on FPGA 
• Interpolation of error band and validation of 

data in real-time on FPGA (analogue TDS) 
• Beam interruption in case of error 

 



Fast changes of the beam energy 
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PROScan was optimized for fast energy changes: 

• Fast mechanical degrader 

• Laminated magnets / dedicated power supplies 

• On-line corrections of ‘drift’ effects 

• Realized on Gantry 2: 

<100ms dead time for 5mm change in range 

Energy modulation in scintillator block 

energy change 



• Delivery of 3 dose distributions with line scanning: 

Box / Diamond / Sphere 

• Dose: 0.2Gy / Delivery time ~10s 

• Combination of sweeper speed and beam intensity modulation 
 

Experimental setup: 

 

Demonstration of fast conformal line scanning 
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CCD 
Solid block 

scintillator 

Gantry 2 
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Summary and conclusion 

• Charged particle have an inherent advantage in radiation therapy (Bragg-Peak) 

 

• Technology promoted the development of Pencil Beam Scanning: 

 Optimized dose distributions with Intensity modulated proton therapy (IMPT) 

 Help to establish proton therapy in radiation therapy 

 

• Effective treatment of moving targets require fast and dynamic beam delivery 

 Fast actuators and embedded control loop 

 Real-time supervision of critical parameters (beam current, position) 


