

A 2.5 ps RMS time synchronization for multiple high-speed transceivers in FPGA

Hong-Bo Xie 2018.06.15

> 01 | Introduction

> 02 | PI Controller

> 03 | FPGA-based TDC

▶ 04 | Time Synchronization

D 05 | Summary

> 01 | Introduction

> 02 | PI Controller

> 03 | FPGA-based TDC

▶ 04 | Time Synchronization

05 | Summary

Quantum Key Distribution (QKD): absolute security in principle.

"mozi" satellite launching into space

Satellite-to-ground docking experiment

- Liao, Sheng-Kai, et al. *Satellite-to-ground quantum key distribution*. Nature, 549(7670), 43–47, 2017.
- Liao, Sheng-Kai, et al. *Satellite-Relayed Intercontinental Quantum Network*. Physical Review Letters, 120(3), 30501, 2018.

Global QKD network. All time. LEO, GEO.

Optical Source for QKD

Both methods need multichannel electric drivers with a deterministic phase skew.

Solution for multichannel electric drivers

Low speed (< 100 MHz)

Parallel drivers with same clock

High speed (> 1 GHz)

Serial drivers with independent clock

High speed application

Every time the system powers up or resets, clock dividers release at a random time.

Random skew

When multiple channels are included, there appeal random skew among channels.

Random skew test

Conditions:

- GTH run at rate 2.5 Gbps,
- PLL output period 400 ps,
- Parallel data width 16,
- Parallel period 6.4 ns,
- System powers up or resets for 225 times.

Results:

The skew conforms to a random distribution, it is the integral multiple of 400 ps.

How to solve the intrachannel random skew?

• Self-phase alignment: 22 ps RMS precision, the maximum is 100 ps.

♦ Another approach

• TDC measured the intrachannel skew.

• PI tuned the GTH's clock phase.

> 02 | PI Controller

> 03 | FPGA-based TDC

▶ 04 | Time Synchronization

05 | Summary

PI Controller

PI embedded in GTH, Tuning the clock phase of PLL output,

PI tuned step size

$$\text{STEP}_{(\text{UI})} = \frac{W_{pi}[3:0]}{64 * D_{txout}}$$

- W_{pi} : ranging from 1 to 15,
- 1 represent the minimal step size.
- *D_{txout}*: Serial divider.

The UI is 400 ps, D_{txout} is 2, so the theoretical minimal step size is 3.125 ps.

PI Controller

A test for the precision of PI adjustment

- Good linear
- Adj. R-Square equals 0.99983
- The slope is 3.79 ps

3.79 ps tunable precision is enough for the system running at rate 2.5Gbps.

The relationship between the step value and the tuned times.

> 02 | PI Controller

> 03 | FPGA-based TDC

▶ 04 | Time Synchronization

05 | Summary

TDC

Time delay line TDC Hit event: hit signal needing to measure,

- REF Clock: the system clock,
- TDL: time delay line,
- Encoder: turn the temperature code to bin code,

Sketch map of Time-interval TDC

Q. Shen *et al.*, *IEEE Trans. Nucl. Sci.*, vol. 62, no. 3, pp. 947–954, 2015.
Y. Wang and C. Liu, IEEE Trans. Nucl. Sci., vol. 63, no. 5, pp. 2632–2638, 2016.

CLR

CLR

CLR

CLR

0

0

Q

Define parameter M represent divided factor of Carry8.

TDC

Tests of performance of TDC

- The system clock period is 6.4 ns.
- The number of taps with M=2 is 309.
- The number of taps with M=4 is 613.

The bin size distribution

TDC

DNL statistics

The DNL in most bins are smaller than ± 1 LSB and the maximum is about 2.5 LSB.

The DNL with M = 4 are smaller than 2 LSB in most bins, worse than that M = 2

TDC

INL statistics

M=2

M=4

The fitting INL in most bins is smaller than ± 2 LSB.

The fitting INL in most bins is smaller than ± 4 LSB.

The fitting INL shows that a system error exists, which attributes to the large delay spanning banks in FPGA.

Resolution test

Resolution test: a delay line test was applied to measure TDC resolution by constructing two identical delay chains

Resolution (M=2): 17.8 ps~24.6 ps RMS.

Resolution (M=4): 18 ps RMS. Flatter

> 02 | PI Controller

> 03 | FPGA-based TDC

04 | Time Synchronization

05 | Summary

Time Synchronization

Multichannel time synchronization

The parallel clock of master channel is routed as the system clock. All slave channels are combined into a mux.

Test for precision of intrachannel time synchronization

中国科学技术大学

University of Science and Technology of China

Time Synchronization

Test for synchronized precision at different value

- Self-phase alignment: the intrachannel skew is not capable of adjusting.
- TDC-based alignment: the intrachannel skew can be tuned to arbitrary value.

Synchronization precision at different points sampling 25 times.

Ranging from 2.2 ps~4.4 ps.

国科学技术大学

> 02 | PI Controller

> 03 | FPGA-based TDC

▶ 04 | Time Synchronization

05 | Summary

Conclusion

With a PI and a TDC, we implement a high-precision 2.5 ps RMS time synchronization among multichannel serial transceivers. Besides, the intrachannel skew can be locked to arbitrary offset with approximate precision.

Outlook

The employed TDC resolution is18 ps, we can further improve the TDC resolution with proper methods, such as INL calibration, bin decimation, and multiple chains measurement. And eventually, a higher-precision time synchronization is achievable.

Thank you!