21st IEEE Real Time Conference - Colonial Williamsburg

Contribution ID: 518

Type: Poster presentation

FPGA acceleration of Model Predictive Control for ITER Plasma current and shape control

Tuesday 12 June 2018 15:55 (15 minutes)

A faster implementation of the Quadratic Programming (QP) solver used in the Model Predictive Control scheme for ITER Plasma current and shape control was developed for Xilinx Field-Programmable Gate Array (FPGA) platforms using a high-level synthesis approach. The QP solver is based on the dual Fast Gradient Method (dFGM). The dFGM is essentially an iterative algorithm, where matrix-vector arithmetic operations within the main iteration loop may be parallelized. This type of parallelism is not well-suited to standard multi-core processors because the number of operations to be spread among processing threads is relatively small considering the time-scale of thread scheduling. The FPGA implementation avoids this issue, but it requires specific techniques of code optimization in order to achieve faster solver execution.

Minioral

Yes

Description

FPGA control

Speaker

Samo Gerksic

Institute

Jozef Stefan Institute

Country

Slovenia

Authors: Dr GERKSIC, Samo (Jozef Stefan Institute); Dr PREGELJ, Bostjan (Jozef Stefan Institute); Dr PERNE, Matija (Jozef Stefan Institute)

Presenter: Dr GERKSIC, Samo (Jozef Stefan Institute)

Session Classification: Poster 1

Track Classification: Control, Monitoring, Test and Real Time Diagnostics Systems