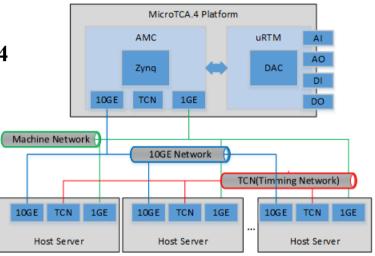
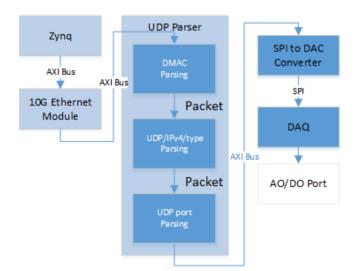
National Fusion Research Institute, June 14th 2018

Development of MicroTCA.4 based remote DAQ system for KSTAR Tokamak

giilkwon@nfri.re.kr
Giil Kwon

Development of MicroTCA.4 based remote DAQ system for KSTAR Tokamak




• To standardize and simplify the control system at KSTAR, we develop 10G Ethernet based remote DAQ system(SDN-Parser).

• Host and the DAQ module can be separated and multiple hosts can be connected to the DAQ module.

• This system consist of homemade case, power, MicroTCA.4 AMC(Advanced Mezzanine Cards) board and RTM(Rear Transition Module) board.

- The module takes 2.7usec to receive the input, process it, and output it.
- The system can generate
 - 8 channel AO signal at 2kHz
 - 4 channel AO signal at 5kHz
 - 1 channel AO signal at 10kHz
 - Each packet payload size is 36byte (48bytes header).
 - Each packet contain one channel signal.

K5TAR

21st IEEE Real Time Conference, 9-16 June, 2018, Williamsburg, VA, USA

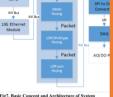
Development of MicroTCA.4 based remote DAQ system for KSTAR Tokamak

Control team, National Fusion Research Institute (NFRI), Daejeon, Rep. of Korea ^b Seedcore Ltd., Daejeon, Rep. of Korea

Abstract- To standardize and simplify the control system at Korea Superconducting Tokamak Advanced Research (KSTAR), we develop 10G Ethernet based remote DAO system. By separating the DAO system and the host, the structure of the control system can be made more flexible. We have developed a DAO module with a 10G Ethernet interface based on a MicroTCA.4 system designed to control devices in real time on a remote server via 10GE. To connect proposed device and host, we use real time network based on UDP multicast atop 10GbE cut-through packet switching infrastructure. This system is implemented using Zynq based MicroTCA.4 board, matched RTM board that has analogue input/output interface and power supply system. By using remote DAQ system, multiple host server can subscribe the DAQ data without additional computational cost in real time. I ms system was no appared to control rucing system at mo law towards

1.Introduction

- · To standardize and simplify the control system at Korea Superconducting Tokamak Advanced Research (KSTAR), we develop 10G Ethernet based remote DAQ system(SDN-Parser).
- Some KSTAR devices require only a small number of highspeed(>1kHz) AI channels and AO channels (Such as Fueling system, Neutral Beam Injection system).
- The use of DAO equipment with MicroTCA.4 crates in such equipment is not suitable in terms of cost or complexity.
- By separating the DAQ system and the host, the structure of the control system can be made Figl. Basic Concept and Architecture of System


more flexible.

- Host and the DAQ module can be separated and multiple hosts can be connected the DAQ module.
- To connect proposed device and host, we use ITER Synchronized Data Network(SD

3. FPGA Logic Design

- This module parse UDP packet from 10GE module and transmit this data to D.Q. module to generate analogue output
 - Currently, Logics for AI/DI module

I SDN P

AO signa

PARSER

Oscilloscope

Fig8. Experiment Enviro

Fig7. Basic Concept and Architecture of System

4. Software for Real Time System

5. Experiment

signal to Oscilloscop

generate AO signal

it, and output it.

- Host server uses Tool for Advanced Control (TAC) engine to implement real time application that control the SDN-Parser by publishing SDN packet.
 - A new TAC engine was based on C++ standard run on Linux.

· To calculate latency of SDN-Parser, we construct the

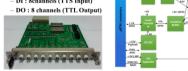
When SDN-Parser get packet, the module emits DO

After parsing the packet from computer, the module

We compare these two signal time to calculate latency

The module takes 2.7usec to receive the input, process

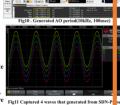
SDN-Parser get packet from computer via 10GE.


It is a multithreaded core engine program for execution of real time application.

2. Hardware Design

- This system consist of homemade case, power, MicroTCA.4 AMC(Advanc Mezzanine Cards) board and RTM(Rear Transition Module) board.
- This system is implemented using Zynq based MicroTCA.4 AMC board, matched RTM board that has analogue input/output interface and pan less power suppl
- AMC: KSTAR Multifunction Control Unit(KMCU, KZ30) is a Zvng based AM hoard that was developed from KSTAR

- AI: 2 channels ADC (18bit resolution, 1MSPS/channel)
- AO: 8channels DAC (16bit resolution, 1MSPS/channel)
- DI : 8channels (TTS Input)



The system can generate - 8 channel AO signal at 2kHz

- 4 channel AO signal at 5kHz

Fig9 packet process delay

- 1 channel AO signal at 10kHz Each packet payload size is 36byte (48bytes header).
- Each packet contain one channel signal.
- We will do more test with multi host server. We will change the packet to have more Fig11 Captured 4 waves that generated from SDN-P

국가핵융합연구소

Conclusions

- We has develop 10G Ethernet based remote DAQ system(SDN-Par er) to standardize and simplify the control system at KSTAR.
- This system consist of homemade case, power, MicroTCA.4 AMC thousand BTM
- · The FPGA module parse UDP packet from 10GE module and transmit this data to DAQ module to generate analogue output.
- SDN Parser process delay is 2.6usec, and it can generate 8 channel AO signal at 2kHz(1 channel 10kHz).
- · We will do more test with multi host server.

H/W Design

Experiment Result

Introduction

H/W Design