An FPGA-Based Track Finder for the L1 Trigger of the CMS Experiment at the High Luminosity LHC

Thomas Owen James & <u>Thomas Schuh</u> 09.06.2016

High Luminosity LHC

Track Trigger Motivation

- current L1 trigger uses information from calorimeters and muon chambers only
- one example: single muon trigger rate under high luminosity conditions

- curve for L1 muons flattens for aimed trigger rates around 14 kHz
- additional tracker information is necessary to retain trigger capability

Stubs

Hough Transform – Theory

- search for primary tracks in the $r \phi$ plane
- infinite amount of different circles (φ₀, R) possible between origin and single measured stub position (r, φ)

but track parameters are correlated

$$\phi_{58} \approx \phi + \frac{q}{\rho_{\rm T}} \times r_{58}$$

(ϕ_{58} and r_{58} are slightly transformed variables)

stub positions corresponds to straight lines in the track parameter plane

Hough Transform – Algorithm

- (1) for each stub calculate ϕ_{58} for each $q/p_{\rm T}$
- Iill the stub into corresponding cells of a 32×32 track parameter array
 - ignore $q/p_{\rm T}$ values which are inconsistent with the $p_{\rm T}$ estimate of the stub
- 3 define cells with stubs from at least 5 different layers as track candidates

FPGA-Based HT Implementation – Overview

- each detector segment will be processed by one array
- array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)
- first step is the filling of the array
- second step is the readout of track candidates

 Book Keeper unpacks stub data from 2 input links, which then propagate to each of the 32 q/p_T Bins in turn

 track candidates found by the Bins propagate back to the Book Keeper, which transmits them over two links

FPGA-Based HT Implementation – Overview

- each detector segment will be processed by one array
- array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)
- first step is the filling of the array
- second step is the readout of track candidates

- Book Keeper unpacks stub data from 2 input links, which then propagate to each of the 32 q/p_T Bins in turn
- track candidates found by the Bins propagate back to the Book Keeper, which transmits them over two links

FPGA-Based HT Implementation - Bin

• each Bin represents a $q/p_{\rm T}$ column in HT array

Hough Transfrom

- gets ϕ_{58} at left boundary
- calculates \(\phi_{58}\) at right boundary

ϕ_{58} Buffer

- duplicates a stub when it belongs to two cells
- sends one stub with exactly one ϕ_{58} value

Track Builder

- histograms stubs in φ₅₈ cells using a segmented memory with a page for each φ₅₈ value
- marks pages with stubs from at least 5 different layers for read-out

Hand Shake

controls the read-out of track candidates

10/15

 $q/p_{\rm T}$

Hardware Demonstrator

- covers an octant in ϕ of the tracker, subdivided in 36 detector segments (4 $\phi \times$ 9 η)
- processes each 36th event (time multiplexing)

- each block corresponds to a MP7 board:
 - mTCA
 - Virtex 7 690 FPGA
 - 72 I/O fibers up to 12.5 Gbps each
- Source emulates the front-end
- Geometrical Processor (GP) multiplex stubs in η and ϕ segments
- HT boards perform the Hough Transformation

Floorplan & Utilization of one HT MP7

- one octant contains 36 segments
 (4 in φ and 9 in η)
- 18 HT arrays implemented in one MP7 board
- at least 2 MP7's needed

Hough Transform – Results

- high tracking efficiency
- good agreement between s/w and h/w

Hough Transform – Results

- data reduction by one order of magnitude
- latency of the HT measured at 1.092 μs
- total algorithmic latency (HT + GP) measured at 1.372 μs
- total latency from Source to Sink including serdes and links measured at 1.855 μs
- well in 4 µs budget for track reconstruction

Summary

- high luminosity conditions present a challenge for the trigger
- CMS plans to reconstruct tracks at first trigger level
- L1 tracking is a completely new handle, never done before
- ability to perform L1 track finding under high luminosity conditions has been demonstrated with current technology
- high track finding efficiency within 1.5 µs achieved using the Hough Transformation
- track filtering using r-z information and track fitting are in progress