

POSTER 228

The monitoring board for the calibration system of the g-2 experiment

A. Anastasio^a, A. Boiano^a, P. Di Meo^a, R. Di Stefano^{a,c}, O. Escalante^{a,b}, M. Iacovacci^{a,b}, F. Marignetti ^{a,c}, <u>S. Mastroianni^a</u>

^aINFN Napoli, ^bUniversità "Federico II" di Napoli, Italy, ^cUniversità di Cassino, Italy

The Calibration System for g-2 experiment

Calorimeter **gain fluctuations** and **monitoring** at the 10⁻⁴ level (both during in-beam & out of beam)

Calibration system: diode Laser and distribution system transmission

- 6 lasers Picoquant (750 pJ @ 405 nm) / Average Power (@ 40 MHz): 28 mW
- **□** 24 diffusers
- Monitor system

- 2 PIN diodes and readout electronics
- 1 PMT with Am/NaI pulser
- Light mixing chamber

Local monitor (signal input: ~ 0.01 pJ/pulse $\sim 10^4$ - 10^5 γ)

2 PMT

Required value at the output of each crystal 0.01 pJ/pulse (el. 2 GeV)

Systematics are
measured with reference
to a Am/NaI "pulser"
with rate of ~10Hz >
need ~ 3 hours for 0.01%
statistical accuracy

Source Monitor electrnonics

Test results

CSP board:

- charge sensitive preamplifier with 800mV/pC and a noise of 0.7 mV FWHM
- charge injection electrode for test purposes
- temperature sensor at 0.1° C

MB board:

- power supplies with EMCO modules & feedback
 - ✓ Bias for PIN diodes /PMT
- stabilize the sensors (PIN/PMT) and electronics
- provides the calibration signal (DAC)
- time measurements for each pulse
- charge converted with 14 bits ADC

Conclusions

- The Source Monitor system allows the containment of the systematic contributions due to gain fluctuations at sub-per mil level on the beam cycle.
- The presence of a CSP board guarantees an high flexibility and it can be customized for PIN/PMT readouts
- The MB module builds a frame for each channel and sends it to the following DAQ level
- Linearity tests have been done; temperature and bias measurements are used for corrections
- Self-calibration and efficiency measurements can be done by a charge injection