

Real-time vertical plasma position control using the heavy ion beam diagnostic

Rafael B. Henriques rhenriques@ipfn.tecnico.ulisboa.pt

Poster # 097

Real-time vertical plasma position control using the heavy ion beam diagnostic

Rafael B. Henriques*, Bernardo B. Carvalho, André S. Duarte, Ivo S. Carvalho, António J. N. Batista, Rui Coelho, Carlos Silva, Ártur Malaquias, Humberto Figueiredo, Hugo Alves, Horácio Fernandes and Igor S. Nedzelskiy

*rhenriques@ipfn.tecnico.ulisboa.pt

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Introduction **Motivation**

Measurement:

HIBD

Problem /

challenge with

the real-time

implementation

Introduction

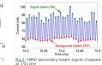
A novel approach of a real-time diagnostic system to measure the vertical plasma position (100 µs cycle) was implemented at the tokamak ISTTOK by developing the Heavy Ion Beam Diagnostic (HIBD) to perform the plasma

The motivation of this work is to prove this new concept which has never been performed in magnetic confinement nuclear fusion devices.

ISTTOK is an iron core tokamak with a major radius (R) of 0.46 m, minor radius (a) of 0.085 m and a typical toroidal field of ~0.5 T. The typical plasma parameters are a plasma current of 4×10³ A and an averaged line density (passing at r = 0) of 5×10¹⁸ m⁻³.

Measurement

Heavy Ion Beam Diagnostic (HIBD):


- Performs local and simultaneous measurement of n_\sigma_u(T_) product in 12 sample volumes along the primary beam trajectory covering ~70% of the plasma diameter [1], Fig.1
- n_σ_«(T_) product is a proxy for plasma pressure
- Due to HIBD measurement nature, a more accurate plasma position is expected than with typical ISTTOK real-time plasma position diagnostics: . Mirnov coils (magnetic & integrated measurement
- · Langmuir probes [2] (electric & local measurement at the periphery only) . Tomography (light radiation, integrated measurement & reco
- · Vertical plasma position is calculated from the "Centre of Mass" of the n σ (T) profile:

$\sum_{i} n_{e}(z_{i})\sigma_{eff}(T_{e}(z_{i})) \cdot z_{i}$

Problem with real-time implementation:

- * In order to obtain a high signal to noise ratio measurement, the primary beam should be chopped at a high frequency, Fig.2
- · Background noise must be removed faster than the real-time cycle, but signal averaging is necessary

Solution:

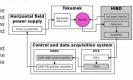
Fast data acquisition Fast combined data processing

Implementation (solution)

Use a fast data acquisition and combined processing with: galvanic isolated digitizer modules together with a Field Programmable Gate Array (FPGA) on a ATCA system [3] and MARTe framework [4].

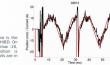
Field Programmable Gate Array (FPGA):

- · Processes the HIBD data acquired at
- · Allows the averaging of up to 200 samples / real-time cycle (100 µs)
- · By chopping the primary ion beam at a frequency > 15 kHz, the FPGA can remove the background noise and provide a new cleaned signal every



Multi-threaded Application Real-Time executor (MARTe) is a control C++ modular framework designed for real-time projects. The atomic element of MARTe is the GAM. The core of a typical GAM processes the input accordingly to how it was configured and outputs the modified information [4].

- Receives the data from the FPGA and calculates the n.g.,(T.) profile
- · Calculates and return the vertical plasma position
- · Configuration (relevant parameters)
- · Injected primary ion beam current · Vertical positions of the sample volumes
- · Output calibration


Overall real-time closed loop implementation

- · Grey boxes represent the performed changes and Horizontal field additions related to the typical ISTTOK control and feedback system [5]
- · ISTTOK real-time closed loop takes 100 us, but the HIBD GAM execution time is < 0.5 µs

Results

The result in the figure together with the successful plasma position control (without early termination of the discharge due to the loss of the vertical plasma position) has demonstrated the quality and success of the overall

line is the set-point and black line is the cal plasma position measured by HIBD. On instants where the red line is below -20, feedback on the plasma position is held off and the heartest feet of the plasma position.

Summary & future work

- · A successful novel real-time diagnostic system implementation for the control of the vertical plasma position was performed at the tokamak ISTTOK using the Heavy Ion Beam Diagnostic
- . This new implementation allowed to have a better and more accurate control in a wider range of the vertical plasma position
- · Further improvements are expected to be performed in terms of · vertical plasma position measurement filtering, for instance using a Kalman filter
- · use of an adaptive PID controller (under consideration)
- . The aim of both these improvements will be the use of a harder PID controller to improve the control speed and quality

References:

III R. B. Henrigues, A. Malaquias, I. S. Nedzelskiy, C. Silva, R. Coelho, H. Figueiredo, and H. Fernandes,

"Bodal profile measurements of plasma pressure-like fluctuations with the heavy ion beam

III R. S. Levenich, F. Francisch, F. Daure, C. Silva, F. F. S. D. 11866, May 17 ("International Profile and Profile American Profile Am

Stabilization in The jet Cosimax: Test: Frans. Ruld. Sci., vol. 57, jp. 363-368, Apr. 2010 14)4 C., Neto, F. Shiron, F. Piccola, R. Vittill, G., D. Bormasal, Z. Zabeo, A. Barbalae, H. Fernandes, D. F. 16)5 Test: A multiplication in the production of the production of the production real-time framework. 16)5 S. Carvalho, P. Duritt, H. Fernandes, D. F. Naferce, P. J. Carvalho, C. Siva, A. Suurt, A. Neto, J. Sousa, A. J. Batista, and B. C. Carvalho, "Istok control system upgrade," Fuz. Eng. and Des., vol. 88 p. 11221126, Oct. 2013

Implementation:

FPGA on ATCA system MARTe framework

> Overall implementation

> > Results

Summary **Future work**

Acknowledgement: IPFN activities received financial support from "Fundação para a Ciência e Tecnologia" through the project UID/FIS/50010/2013.

Final remark

The use of a Heavy Ion Beam Diagnostic for the real-time plasma position control has never been performed in nuclear fusion devices

Poster # 097

