

Real-time resonant magnetic perturbations feedback control system for tearing mode suppression on J-TEXT

Wei Zheng, Feiran Hu, Ming Zhang*, Da Li, Qiming Hu, Hai Jin, Yuan Pan

State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074, China

◆ 1st signal zero-crossing

---- new cycle

Start

Init

≥ 2nd −nth signals zero-crossing

latest time-phase relation

---- update time-phase relation

Obtain real-time phase using

Contact us: zhengwei@hust.edu.cn; hufeiran@hust.edu.cn

Abstract

- ◆ 2/1 Resonant magnetic perturbations(RMP) and 2/1 tearing modes(TMs) can interact
- Apply RMP in different phase of TM island will produce different effect.
- ◆ When the O point of TM island passes through the Mirnov probe, the Mirnov signal will zero-cross.
- ◆ Output the control signal by real-time comparing the phase of TM island and the given phase in real-time.
- ◆ Due to the Mirnov signals are noisy, error correction methods arenecessary.
- The control period of real-time feedback control system is within 500ns to ensure the precision within 2 degrees.

Principle

- Applied in different phases, RMP can contribute stabilizing, destabilizing, accelerating, decelerating effect.
- lacklosh The interactions depend on the phase shift $\Delta \alpha$.
- lacktriangle The stabilizing region is from 0.5π to 1.5π while the accelerating region is from π to 2π . Ideally, apply RMP in this rage can produce good results.

Real-time phase compare algorithm

- lacktrian In an α -cycles, each β period costs the same phase.
- lacktriangle Current β -periods can be predicted by the last β periods
- > There are N channels in each α -cycle. \triangleright Nth β -period begin is $t_n(N^{th})$
- channel zero-crossing)

$$\Phi_{t_n} = \frac{360 \times (n-1)}{N}$$

$$t - t \quad 360$$

- The gray box indicates a complete α -cycle.
- The t_1 and t_2 are the adjacent β -periods.

Implementation based on NI cRIO

- Overall design of control system
- ◆ Integrate data acquisition
- ◆ FPGA for real-time calculation
- ◆ Archive raw data to HOST by FIFO

◆ Use LabVIEW and LabVIEW FPGA

- Upload data to Database by Ethernet

Installed cRIO plantform

- ◆ cRIO 9039, algorithm on the FPGA
- ◆ 1 NI 9401 for DIO
- ◆ 4 NI 9223 for requiring data

Work flow of real-time phase calculation algorithm on FPGA

Real-time error correction

- multiple zero-crossing around zero amplitude in Mirnov signal
- Wrong zero-cross during the half cycle due to interference
- ◆ Zero-crossing direction: only minus-plus
- ◆ Only recognizes the first zero-crossing point and ignore the rest within a certain time span
- ◆ Integrates one-fourth cycle, only when the integral value is less than zero, the minus-plus zero-crossing is considered to be effective.
- Does not affect the calculation speed.

Experiment result

- ✓ Protect pulsed power (response supply frequency insufficient)
- ✓ Reduce eddy current
- ✓ Reduce the output frequency significantly frequency:
- (a)1/2 frequency (b) 1/3 frequency ◆ Duty cycle: (a)25%,
- (b)50%
- Output current: (a)0.4kA (b)1kA