
Fast and efficient algorithms for computational
electromagnetics on GPU architecture

Paolo Bettini, Tautvydas Maceina, Gabriele Manduchi, and Mauro Passarotto

Abstract—Integral formulations, suitable for the numerical
solution of quasi-magnetostatic (eddy currents) problems in large
and complex 3D domains, require specific post-processing tools
to compute the effects of known current density distributions
over elementary geometric entities (both mesh elements and
field sources). The aim of this paper is to present a fast and
robust implementation on a GPU architecture of an accurate
algorithm for the computation of magnetic field and vector
potential components.

I. INTRODUCTION

INTEGRAL formulations can be more convenient than 3D
finite-element-method (FEM) codes for the numerical solu-

tion of quasi-magnetostatic (eddy currents) problems in large
and complex domains, consisting of many interconnected parts
or components (e.g. magnetic confinement fusion devices),
since they do not require the discretisation of non-conducting
subdomains. A good accuracy is often achieved with a rela-
tively coarse discretization, thus reducing the need of allocated
memory and computing time. Moreover, suitable techniques
(e.g. the Fast Multiple Method (FMM) [1] or the Adaptive
Cross Approximation (ACA) coupled with hierarchical ma-
trix (H -matrix) arithmetics [2]), can be used to overcome
the impractical memory and computational time requirements
which arise in very large scale models (integral formulations
require the storage of dense matrices: the matrix size scales
quadratically with the number of degrees of freedom n and its
inversion has a computational cost of the order of n3 for both
direct and iterative solvers).

However, by following an integral approach, a specific post-
processing tool is needed to evaluate the magnetic flux density
and the magnetic vector potential components produced in
the 3D space by known current density distributions over
elementary geometric entities associated to the mesh elements
(uniform polyhedral for 3D, or uniform polygonal sources for
2D) or to the sources themselves (2D axisymmetric massive
or filamentary coils, 3D coils modeled by means of uniform
polyhedral, polygons or current sticks).

Several analytic expressions for the calculation of the mag-
netic flux density and the magnetic vector potential produced
by elementary geometric entities (bars, bricks, tetrahedrons,

Paolo Bettini is with the Università degli Studi di Padova, Padova, Italy,
and with the Consorzio RFX, Padova, Italy, (e-mail: paolo.bettini@unipd.it).

Tautvydas Maceina is with the Università degli Studi di Padova, Padova,
Italy, (e-mail: tautvydas.maceina@igi.cnr.it).

Gabriele Manduchi is with the Consorzio RFX, Padova, Italy, (e-mail:
gabriele.manduchi@igi.cnr.it).

Mauro Passarotto is with the Università degli Studi di Padova, Padova, Italy,
(e-mail: mauro.passarotto@studenti.unipd.it).

978-1-5090-2014-0/16/$31.00 c©2016 IEEE

prisms with polygonal section and oblique ends, polygons,
sticks, arc segments, etc) have been published by many authors
[3], [4], [5], [6], [7], [8], [9], [10], [11]. These expressions
allow a better accuracy with respect to those achievable by
using pure numerical integration schemes, but are generally
hard to implement in a fast and efficient way due to some
peculiarities (a local coordinate systems is often introduced to
perform the integration in a closed-form) or the presence of
numerical issues (multiple valued inverse tangent functions)
which require a careful programming.

The aim of this paper is to present a fast and robust
implementation on a GPU architecture of an accurate ex-
pression (closed-form formulas) for the computation of the
magnetic field and vector potential components produced by
a general polyhedral source, as introduced in [12] and briefly
recalled in Section II. Section III provides some details on
the GPU implementation, in particular on how to benefit
from their SIMD (Single Instruction stream Multiple Data
stream) architecture, by programming each thread to compute
the contribution to the magnetic field (or magnetic vector
potential) of a single elementary source at a single field point
[13]. Finally, Section IV presents a critical review of the results
for a simple test case together with an overview of pros and
cons of GPUs vs CPUs implementations.

II. UNIFORM CURRENT DENSITY SOURCES

A general expression of the magnetic flux density and mag-
netic vector potential produced by a polyhedron with uniform
current density has been introduced in [12] by means of a
scalar function (here denoted as ff) which can be expressed
in terms of geometric elementary entities used in any solid
modelling (nodes, edges, faces, volumes) and the standard
incidence matrices (C, G, D) which relate each other in a
cell complex (mesh). For the sake of completeness, we recall
these expressions, in the following subsections.

A. Magnetic vector potential
The magnetic vector potential A, produced by a uniform

current density J inside a polyhedron v, at the field point r,
is given by

A(r) =
µ0

4π

∫
v

J

|r − r′|
d3r′ (1)

where r′ is an arbitrary point of v.
With some algebra (see [12]), (1) can be recast as

A(r) =
µ0J

8π

∑
Sf∈∂v

(rf − r) · nfff (r) (2)

where nf is the outgoing normal unit vector of the planar face
Sf ∈ ∂v, rf denotes an arbitrary point of Sf and ff (r) is a
scalar function defined as

ff (r) =

∫
Sf

1

|r − r′|
d2r′ (3)

where r′ is an arbitrary point of Sf .

B. Magnetic flux density

The magnetic flux density B, produced by a uniform current
density J inside a polyhedron v, at the field point r, is given
by

B(r) =
µ0

4π

∫
v

J × (r − r′)

|r − r′|3
d3r′ (4)

where r′ is an arbitrary point of v.
Again, with some algebra (see [12]), (4) can be recast as

B(r) =
µ0

4π

∑
Sf∈∂v

J × nfff (r) (5)

where nf is the outgoing normal unit vector of the planar face
Sf and ff (r) is the scalar function defined in (3).

C. How to compute ff
With some algebra (see [12]), (3) can be recast as

ff (r) = f ′f (r) + f ′′f (r) (6)

The following expressions for the scalar functions f ′f , f ′′f are
adopted, which are well suited for the implementation on a
GPU architecture,

f ′f (r) =
∑

le∈∂Sf

nf × (re − r) · uefe(r) (7)

f ′′f (r) = (rf − r) · nfΩf (r) (8)

where ∂Sf is the boundary of the planar face Sf (i.e. a set of
oriented edges le), nf is the outgoing normal unit vector of
Sf , re is an arbitrary point of le, ue is the unit vector of the
edge le, rf is an arbitrary point of Sf and Ωf (r) is the solid
angle seen from the calculation point r subtended by Sf .
fe(r) is a scalar function which can be computed using the

intrinsic vector form introduced in [4] for a current stick with
endpoints r1 and r2,

fe(r) = ln

(
|r2 − r|+ |r1 − r|+ |r2 − r1|
|r2 − r|+ |r1 − r| − |r2 − r1|

)
(9)

The solid angle Ωf (r) can be computed in a very efficient
way by invoking the additivity property of solid angles and
splitting each face Sf into triangles (e.g. one triangle for each
edge le ∈ Sf). Then the solid angle ΩT (r) subtended by the
triangular face (ri, i = 1, 2, 3 are its vertices) is computed
with the intrinsic vector form given in [14], [15]

ΩT (r) = 2 arctan

[
(r1 − r) · (r2 − r)× (r3 − r)

D

]
(10)

with
D = |r1 − r||r2 − r||r3 − r|+ |r3 − r|(r1 − r) · (r2 − r)+

+|r2 − r|(r1 − r) · (r3 − r) + |r1 − r|(r2 − r) · (r3 − r)
(11)

III. IMPLEMENTATION ON A GPU ARCHITECTURE

Relatively new GPU computation paradigm offers great
merits in area of HPC (High Permance Computing). Scientific
community is slowly but steadily adopting the it. However not
every scientific problem can be solved efficiently on a GPU.

In general, problems of iterative nature, high level of
computational complexity and high level of inter-dependence
between constituents are less suitable for GPU computing.

Nevertheless many of these problems usually can be re-
casted into more GPU-applicable formulation. In order to
efficiently map the problem to a GPU architecture one has
to find the most independent computation line in the problem
and reshape the rest of the problem around it, i.e. one has to
expose the “data parallelism” within the problem.

Often the problem has to be broken down into several
more primitive parts in order to be efficiently programmed
on GPU. In this sense (7)-(10) are very well suited, since they
are compact and do not require any programming conditional
statements. After these steps are completed one just simply
assigns a GPU thread to each of those computation lines.

A. CUDA code development

The code development starts with a Matlab script that serves
as prototype for C code, which later is translated into CUDA
(Compute Unified Device Architecture). The prototype code
consists of 3 nested loops:

1) Loop over sensors (ns)1

2) Loop over volumetric source elements (nv)2

3) Loop over faces of volumetric source elements (nf)3

The magnetic field values (slowest loop) are accumulated in
the two higher loops. Summation in GPU may not be a trivial
task, if the sum value is shared between threads. Therefore
a simple straightforward parallelisation could be implemented
only for the first loop.

The pseudo-code for a GPU implementation is
1) Load GPU memory with:

• sensor values (x, y, z coordinates)
• current density values (real and imaginary parts of
Jx, Jy, Jz components)

• volumetric source data (faces, edges, nodes)
2) Launch the GPU kernel

• Each thread loops over volumetric source elements
– Each thread loops over the faces of volumetric

source elements and computes (7)-(10)
3) Copy the acquired field values, according to (2) and (5),

from GPU to host

IV. NUMERICAL RESULTS

The proposed approach has been applied to a couple of
simple test problems, to validate the CUDA implementation.

1In a magnetic confinement fusion device, ns spans from some hundreds
(real sensors) to several thousands if we refer to a grid of synthetic sensors.

2In a real application it spans from some thousands to hundred thousands
mesh or integral source elements.

3nf = 4 for tetrahedra, nf = 6 for hexahedra, nf arbitrary for polyhedra

CUDA

Fig. 1. First problem: a brick-shaped element with a uniform unitary
current density. The Bx component computed with CUDA code (solid line)
is compared to the exact values (stars).

CUDA Bx [T] Analytical Bx [T]
0.012239788877157 · 10−6 0.012239788877179 · 10−6

0.015776776206583 · 10−6 0.015776776206627 · 10−6

0.033089455139092 · 10−6 0.033089455139142 · 10−6

0.091304199096174 · 10−6 0.091304199096172 · 10−6

0.160898768631363 · 10−6 0.160898768631182 · 10−6

TABLE I
Bx VALUES COMPUTED AT x = {−2,−1, 0,+1,+2} WITH CUDA

ROUTINES AND ANALYTICAL FORMULA.

First, a brick-shaped element (1m × 1m cross section,
100m long, centred in (0, 0, 0)) with a uniform unitary current
density (Jy) is considered. It is a convenient problem since it
has a well known analytical solution in terms of magnetic
flux density components [10]. The field point r moves on a
line through the element and its x coordinate ranges between
rx = −2 and rx = +2, while the other coordinates are kept
constnt (rz = 0.25, ry = 0, respectivley). As shown in figure
1, a perfect agreement is found between the Bx component
computed with CUDA routines and the exact values. Table I
summarizes the numerical results for a given number of field
points r.

Then, the current density induced in a conducting plate
(discretised with 8 × 8 hexahedra) by a uniform vertical
magnetic field (Bz=1T , f=50Hz) is computed with a volume
integral code [16] and the proposed approach is used to
evaluate the magnetic flux density produced on a grid of
synthetic sensors placed above the plate, as shown in figure 2.

Nvidia GeForce GTX 480 was used to perform the calcula-
tion. GeForce GTX 480 is a graphics card originally designed
for gaming purposes built on Fermi architecture and released
in 2010. It runs 700MHz clock with 1.5GB of RAM and
48kB of shared memory.

With a simple straightforward parallelisation we get
0.031ms of kernel execution and 33.482ms for memory
transfer from GPU to host. A single-threaded C code ran in
about 371ms. If only kernel execution is measured against
single-threaded CPU code, it comprises more than 10000x
gain in performance4. However if memory transfer is included
into measurement, then only ≈ 10x gain in performance
is observed comparing to single-threaded CPU code. It is a
common nature of GPUs where memory transfer presents a

4The gain factor likely increases of an order of magnitude with the most
recent and performing GPUs (e.g. Tesla K40 family).

Fig. 2. Eddy currents induced by a uniform vertical magnetic field (Bz=1T ,
f=50Hz) on a conducting plate discretised with 8× 8 hexahedra. Blue dots:
synthetic sensors grid (15 × 15). Blue arrows: Magnetic flux density (a.u.),
not to scale.

bottleneck in performance. The kernel and memory transfer
scale differently from each other with regard to the increasing
number of sensors. Kernel duration time stays constant, while
memory transfer scales linearly, as shown in figure 3; we ob-
serve the aforementioned manifestation of memory bottleneck,
that is inherently present in GPU codes. Moreover, this ≈ 10x
gain would be even more diminished, if one compared against
multi-threaded CPU codes.

Fig. 3. Scaling of kernel execution (left) and memory transfer right) with
respect to the increasing number of sensors.

V. CONCLUSIONS

A programmer should consider several points regarding
the code implementation, both in terms of HW resources
(GPU/CPU) and SW (platforms/compilers/libraries, etc).

1) GPU codes are good in solving problems of a ”data
parallel” nature. Most ofently it is up to a programmer
to discover this feature in the problem. GPUs offer
great computational gains for a trade-off of memory
bottleneck and complicated programming process.

2) Single-threaded CPU codes are the simplest and easiest
way to construct computation and usually are sufficient
for a small caliber problems.

3) Multi-threaded CPU codes can be both good in solving
problems of a ”data parallel” nature and problems of
a ”task parallel” nature. Yet a ”task parallel” problems
are less common in physics and engineering. These
codes are relatively easy to implement parallelization
into a problem (many efficient libraries are available and

only a modest implementation effort is required to adapt
Single-threaded CPU codes to OpenMP directives).

REFERENCES

[1] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,
J. of Comp. Pys., vol. 73, no. 1, pp. 325348, 1987.

[2] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. part i:
Introduction to H-matrices, Computing, vol. 62, pp. 89108, 1999.

[3] C. J. Collie, Magnetic fields and potentials of linearly varying currents or
magnetization in a plane bounded region, in Proc. Compumag, Oxford,
U.K., 1976, vol. 76, pp. 8695.

[4] J. D. Hanson and S. P. Hirshman, Compact expressions for the Biot-Savart
fields of a filamentary segment, Phys. Plasmas, 9, 4410-4412 (2002). 11

[5] D. R. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C.
Butler, Potential integrals for uniform and linear source distributions on
polygonal and polyhedral domains, IEEE Trans. Antennas Propag., vol.
AP-32, no. 3, pp. 276281, Mar. 1984.

[6] B. Azzerboni, E. Cardelli, M. Raugi, A. Tellini, and G. Tina, Analytical
expressions for magnetic field from finite curved conductors, IEEE Trans.
Magn., vol. 27, pp. 750757, Mar. 1991.

[7] G. Aiello, S. Alfonzetti, B. Azzerboni, S. Coco, and G. Tina, Analytical
computation of magnetic vector potential from tetrahedral conductors,
IEEE Trans. Magn., vol. 28, no. 5, pp. 20452050, Sep. 1992.

[8] S. Pissanetzky and Y. Xiang, Analytical expressions for magnetic field of
practical coils, COMPEL, vol. 9, no. 2, pp. 117121, 1990.

[9] I. R. Ciric, Simple analytical expressions for the magnetic field of current
coils, IEEE Trans. Magn., vol. 27, no. 1, pp. 669673, Jan. 1991.

[10] L. Urankar, Vector potential and magnetic field of current-carryingfinite
arc segment in analytical formPart III: Exact computation for rectangular
cross section, IEEE Trans. Magn., vol. MAG-18, pp. 18601867, Nov.
1982.

[11] L. Urankar, Vector potential and magnetic field of current-carrying finite
arc segment in analytical formPart V: Polygon cross section, IEEE Trans.
Magn., vol. 26, pp. 11711180, May 1990.

[12] M.Fabbri, Magnetic Flux Density and Vector Potential of Uniform
Polyhedral Sources, IEEE Transactions on Magnetics, vol 44, no.1, 2008

[13] A. G. Chiariello, A. Formisano, R. Martone, Fast magnetic field com-
putation in fusion technology using GPU technology, Fusion Engineering
and Design 88 (2013) 1635 1639

[14] R. Courant and D. Hilbert, Method of Mathematical Physics. New York:
Interscience, 1962, vol. 2, p. 246.

[15] A. van Oosterom and J. Strackee, The solid angle of a plane triangle,
IEEE Trans. Biomed. Eng., vol. BME-30, no. 2, pp. 125126, Feb. 1983.

[16] P. Bettini, M. Passarotto, R. Specogna, ”A volume integral formulation
for solving eddy current problems on polyhedral meshes”, submitted to
CEFC 2016 Conference, 13-16 November, 2016, Miami (USA)

