
CIDAF is a library providing a series of facilities that aid in
the development of C++ emulations of firmware. It
features a clocking system, a data transfer system and
tools to help bringing the behavior of the simulation to
coincide with the one of the hardware, e.g. support for
fixed-width integers.

In a typical use case, a simulation for individual components
making up a complex firmware would be written in C++,
taking as a reference the hardware description language
source. The components would then be connected together
using CIDAF

Connections and disconnections between components (as in
figure) employ a double handshake, so pointer-safety is
ensured when objects are disconnected, destroyed or moved.

CIDAF

Comparison between firmware running on hardware (black dots)
and emulator implemented with CIDAF (blue line)

Regionη

To
ta

l N
o.

 o
f C

an
di

da
te

 T
ra

ck
s

26000

28000

30000

32000

34000

36000

38000

40000

42000

44000

firmware emulatorTMTT Demonstrator TTBar+PU140 1000 Events

Regionη
0 1 2 3 4 5 6 7 8 9

ra
tio

 fw
/e

m

0.8

0.9

1

1.1

1.2

Regionη

To
ta

l N
o.

 o
f C

an
di

da
te

 T
ra

ck
s

15000

20000

25000

30000

35000

firmware emulatorTMTT Demonstrator Muons+PU140 1000 Events

Regionη
0 1 2 3 4 5 6 7 8 9

ra
tio

 fw
/e

m

0.8

0.9

1

1.1

1.2

T
q/p

To
ta

l N
o.

 o
f C

an
di

da
te

 T
ra

ck
s

4000

6000

8000

10000

12000

14000

firmware emulatorTMTT Demonstrator Muons+PU140 1000 Events

T
q/p

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ra
tio

 fw
/e

m

0.8

0.9

1

1.1

1.2

T
q/p

To
ta

l N
o.

 o
f C

an
di

da
te

 T
ra

ck
s

6000

8000

10000

12000

14000

16000

firmware emulatorTMTT Demonstrator TTBar+PU140 1000 Events

T
q/p

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ra
tio

 fw
/e

m

0.8

0.9

1

1.1

1.2

Muons + PU140
Tracks in η

Top pair + PU140
Tracks in η

Muons + PU140
Tracks per (q/pT)

Top pair + PU140
Tracks per (q/pT)

Results from HT firmware emulation

RegisterOutput
(PassiveInputBase* p)

RegisterInput
(ActiveOutputBase* p)

RegisterOutput
(PassiveInputBase* p)

AlreadyRegistered
(PassiveInputBase* p)

AlreadyRegistered
(PassiveInputBase* p)

ActiveOutput<T> PassiveInput<T>

AlreadyRegistered
(PassiveInputBase* p)

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme FP7/2007-2013/ under REA grant agreement n° [317446] INFIERI "INtelligent Fast Interconnected and Efficient Devices
for Frontier Exploitation in Research and Industry''. This work was supported in part by the the UK Science and Technology Facilities Council, we
gratefully acknowledge their support.

Luigi Calligaris1,2 on behalf of the CMS collaboration

Emulation of a prototype FPGA track finder
for the CMS Phase-2 upgrade with the

CIDAF emulation framework

1
STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom. email: luigi.calligaris@stfc.ac.uk

2 Supported by EU FP7-PEOPLE-2012-ITN project nr 317446, INFIERI, “Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry”

Motivation
The CMS collaboration plans to upgrade its outer silicon tracker
detector by 2026. This "Phase-2" upgrade prepares the experiment
for the High Luminosity phase of the LHC (HL-LHC), The upgraded
tracker electronics will provide a list of reconstructed tracks to the
Level-1 trigger, to improve its performance.

A proposed track finding system is based on a Hough transform
implemented in firmware, designed for FPGA hardware. Currently, a
demonstrator for the system is being commissioned. The latter is
based on MP7 cards, featuring a Xilinx Virtex-7 XC7VX690T FPGA.

To test the behavior of the firmware, a software emulator in C++
and an emulation infrastructure to help its development have been
written. This software infrastructure has been named CIDAF
(CIrcuit DAta Flow), is independent from the specifics of the system
being emulated and can be used in many different applications.

CIDAF is available for testing from the author of this poster.

class Component1
Handshake

Stub flow
upon Tick()

PassiveInput<Stub>

Write(Stub&)

Tick()

ActiveOutput<Stub>
Tick()Write(Stub&)

Tick()

class Component2

TransferClockA

Tick()
InternalClockA

Tick()

Emulation example

Loop of the simulation
 driver program

Evolve internal state
Commit transfers

Evolve internal state
Commit transfers
...

Cycle 0:

Cycle 1:

A driver program triggers the clock responsible for evolving the internal
state of Component1 and Component2, then initiates the transfer of data
from Component1 and Component2 by triggering the clock associated to
the Component1's ActiveOutput. This repeats at each emulation cycle.

Sample avg. # tracks / event
(1000 evts each) fw emu
Muons + PU0 5.442 5.442
Muons + PU140 215.35 215.339
Top Pair + PU140 321.999 321.537
Top Pair + PU200 874.799 873.926

Table on the right: average
number of tracks per event
found over 1000 events, for
each of the listed types of
simulated Monte Carlo samples.

