
CIDAF is a library providing a series of facilities that aid in 
the development of C++ emulations of firmware. It 
features a clocking system, a data transfer system and 
tools to help bringing the behavior of the simulation to 
coincide with the one of the hardware, e.g. support for 
fixed-width integers.

In a typical use case, a simulation for individual components  
making up a complex firmware would be written in C++, 
taking as a reference the hardware description language 
source. The components would then be connected together 
using CIDAF

Connections and disconnections between components (as in 
figure) employ a double handshake, so pointer-safety is 
ensured when objects are disconnected, destroyed or moved.

CIDAF

Comparison between firmware running on hardware (black dots)
and emulator implemented with CIDAF (blue line)
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Results from HT firmware emulation
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Motivation
The CMS collaboration plans to upgrade its outer silicon tracker  
detector by 2026. This "Phase-2" upgrade prepares the experiment  
for the High Luminosity phase of the LHC (HL-LHC), The upgraded 
tracker electronics will provide a list of reconstructed tracks to the 
Level-1 trigger, to improve its performance. 
 

A proposed track finding system is based on a Hough transform 
implemented in firmware, designed for FPGA hardware.  Currently, a 
demonstrator for the system is being commissioned. The latter is 
based on MP7 cards, featuring a Xilinx Virtex-7 XC7VX690T FPGA.

To test the behavior of the firmware, a software emulator in C++ 
and an emulation infrastructure to help its development have been 
written. This software infrastructure has been named CIDAF 
(CIrcuit DAta Flow), is independent from the specifics of the system 
being emulated and can be used in many different applications.
 

CIDAF is available for testing from the author of this poster.
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Emulation example

Loop of the simulation
 driver program
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Cycle 0:

Cycle 1:

A driver program triggers the clock responsible for evolving the internal 
state of Component1 and Component2, then initiates the transfer of data 
from Component1 and Component2 by triggering the clock associated to 
the Component1's ActiveOutput. This repeats at each emulation cycle.

Sample avg. # tracks / event
(1000 evts each) fw emu
Muons + PU0 5.442 5.442
Muons + PU140 215.35 215.339
Top Pair + PU140 321.999 321.537
Top Pair + PU200 874.799 873.926

Table on the right: average 
number of tracks per event 
found over 1000 events, for 
each of the listed types of 
simulated Monte Carlo samples.


