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Fig. 1 — Traces produced by old" proton showers (circle markers)
and " young" neutrino showers (square markers). Traces can be
classified using exponential attenuation factors especially for
relatively low angles (80°-89°). Graphs show that for large zenith
angles and very wide energy ranges ,,old” proton showers are
attenuated faster than ,,young” neutrino showers.
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ABSTRACT

Neutrinos play a fundamental role in the understanding of the origin of ultrahigh-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, the very low rate of events potentially generated by
neutrinos is a significant challenge for detection techniques and requires both sophisticated algorithms and high-resolution hardware. Air showers initiated by protons and muon neutrinos at various altitudes, angles and energies were simulated in CORSIKA and the
Auger OffLine event reconstruction platforms, giving analog-to-digital (ADC) patterns in Auger water Cherenkov detectors on the ground. The proton interaction cross section is high, so proton ,,old” showers start their development early in the atmosphere. In contrast
to this, neutrinos can generate ,,young” showers deeply in the atmosphere relatively close to the detectors. Differences between ,,0ld” proton and ,,young” neutrino showers are visible in attenuation factors of ADC waveforms. For the separation of old" proton and
,young” neutrino ADC traces many three-layer artificial neural networks (ANNSs) were tested. They were trained in MATLAB (in a dedicated way - only ,,0ld" proton and ,,young” neutrino showers as patterns) by simulated ADC traces according the Levenberg-
Marquardt algorithm. Unexpectedly, the recognition efficiency is found to be almost independent of the size of the networks. The ANN trigger based on a selected 8-6-1 network was tested in the Cyclone$®V E FPGA 5CEFA9F3117, the heart of prototype Front-End
boards developed for testing new algorithms in the Pierre Auger surface detectors.
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Fig. 2 — Exponents of accepted and rejected traces for protons and
neutrinos. Exponents of accepted neutrino and proton traces are well
separated from each other (A). Nevertheless, training by patterns for
only ,,0ld” proton and ,young” neutrino showers seems to be
justified as protons start their interactions just at the beginning of the
atmosphere while the probability of neutrino interactions high in the

atmosphere is negligible.
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Table 1 — Distances used in simulations from the first interaction to
detector location for protons and muon neutrinos as a function of
zenith angle. All the distances are in g/cm?. Because of the geometry
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Fig. 3 — Efficiency of separation of the neutrino events from the
proton background as a function of the threshold for various angles
and energies of the muon neutrinos and protons. The graphs denoted
as ,,standard” (strd) show the efficiency for network training on the
basis of a wide range of initial points of the first interaction. The
graphs denoted as ,,dedicated” (ded) show the efficiency when the
network Is trained by patterns corresponding to ,,young” neutrino
events and ,,0ld” proton ones. A higher level of proton background
(spuriously recognized) for lower angles (80°) comes with a higher
probability of significant EM contribution in a shower (for a slant
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