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Abstract—Single Photon Emission Tomography (SPECT) is
mainly limited by the trade-off between spatial resolution and
sensitivity determined by the collimation. In this context, CdZnTe
detectors enable higher intrinsic spatial resolution compared to
previously used scintillators, even improved by using techniques
for 3D positioning. Moreover, the compactness of these detectors
enables new system architectures. To improve the sensitivity of
SPECT systems without degrading their spatial resolution, a
possible way is to adapt the field of view depending on the kind of
acquisition and the morphology of the patient, using flexible de-
tection heads. That means computing reconstruction fast enough
to determine interesting area where to focus detectors. This task
is problematic because of the complexity of data to be processed,
as the high resolution of detectors makes measurements sparse,
and because of the dependency of reconstruction to head position,
that must be taken into account.
The aim of the present study is to propose new approaches to deal
with this massive amount of complex information in real time to
dynamically adapt the field of view. Implementation techniques
from MLEM algorithm are proposed in order to fasten the
reconstruction and adapt the geometrical configuration during
the examination, and thus improve the sensitivity of the system
without degrading its spatial resolution.

I. INTRODUCTION

PERFORMANCES of SPECT systems are mainly limited
by the trade-off between their sensitivity and their spa-

tial resolution. Significant improvements have been made on
CZT detectors, and collimation is optimized but performances
can still be enhanced by adapting the field of view of the
system to the emitting object during the examination. Real-
time computing is necessary to adapt the configuration, in
order to determine the most informative areas from the results.
A nowadays practicable configuration for cardiac imaging to
empower such adaptations has been used as an example to
lead our studies. The system is composed of 10 independent
detection heads placed on a 120 degree arc around the patient,
at 220 mm from the center of the object to be imaged
(Fig. 1), in the spirit of the architecture proposed by Spectrum
Dynamics. Each head can rotate on itself independently from
others with 20 determined orientations that can cover up to 45
degrees. Heads are collimated with 20 mm high parallel holes
collimators placed at 15 mm from the detector to enhance
sensitivity. Septa are 1.5 mm wide, and holes size is 1 mm.
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Fig. 1. Flexible configuration for cardiac imaging used in this study.

Heads uses 4 detection modules (HiSPECT [1]) developed
in CEA-LETI to read and process data from CZT detectors.
Modules are made of 40×40×5 mm detector with 256 pixels
(2.5 × 2.5 mm) and 8 ASICs (IDeFX [2]) right next to the
detector for signal readout. The FPGA which reads out data
from ASICs embeds signal processing techniques that enables
3D-positioning inside the detector and resolution recovery [3].
In that way, 8 levels of depth of interaction inside the detector
and 8× 8 sub-pixels per anode can be achieved. We consider
that the size of the region o f interest (RoI) to be imaged is
140×140×140 mm. The numerical size necessary to correctly
cover this space with the spatial resolution empowered by
described head is 64× 64× 64 voxels.
In the followings, M stands for the detecting space and O
is the imaging space. Classical capital letters (as D) are used
for functions, italic capital letters (as M ) for distributions,
lowercase letters for voxels, and bold characters (as R) for
operators.
MLEM is commonly used to estimate emission distribution
in the object. This algorithm originally works on binned
representations of the object (O) and the measurements (M ),
linked by a huge matrix (R) describing the model:

∀m ∈M,∀o ∈ O,Mm = Rm,o.Oo (1)

where Rm,o stands for the probability to get a measurement
in the detecting voxel m when having an event in the imaging
voxel o. In the configuration we described, our detecting
space dimension is about 108 bins considering every possible
orientation. The size of the model would thus be about 1013

bins. Usually, the model is determined by calibration. This
method is not practicable for this size because the storage
and the reading would be problematic. Moreover, real-time
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computing is necessary to focus rapidly detecting heads on the
most informative areas. Complete estimation of the emitting
object have to be computed before changing the configuration
to know what additional measurement could improve the best
reconstruction quality. Knowing the amount of data to be
processed, adaptation on classical MLEM algorithm have to
be made to empower adapativity.

II. IMPLEMENTATION TECHNIQUES FOR MLEM
ALGORITHM

A. List-Mode

Classical MLEM algorithm works on the following update
on estimation at the end of each iteration from binned repre-
sentation (M ) of measurements :

O(n+1)
o =

O
(n)
o

N(o)
×

∑
m∈M

Rm,o.Mm∑
o′∈ORm,o′ .O

(n)
o′

(2)

where N(o) is a normalization factor to take into account the
visibility of each voxel o. Histogram events is questionable
since detecting matrix (M ) is sparse. Consequently, two mea-
surements are unlikely to occur on the same voxel, and most of
the detecting bins would stay null. MLEM is computable in list
mode without any change on the result [4]. Instead of browsing
bins m of the detecting space, only voxels corresponding to
a measurement mk are considered. The update on estimation
becomes :

O(n+1)
o =

O
(n)
o

N(o)
×

∑
k∈K

Rmk,o∑
o′∈ORmk,o′ .O

(n)
o′

(3)

where K is the list of detected events k. MLEM is faster in
list-mode since there is far less events to process than voxels
in the detecting space. There is thus less loops to compute.
Another interesting point with the list-mode for real-time
processing is that it is not worth waiting for the end of the
acquisition to compute back projections of the stored events.
Thus, list-mode offers some paralellization possibilities for
online reconstruction pipeline.

B. On the Fly Processing

The complexity of the model R introduced in section I is a
challenge to face to empower adaptations. To simplify it, we
propose to split it into three sub-models: the detector (D), the
collimator (C), and the geometry (G). The model expressed
in (1) becomes:

∀m ∈M,∀o ∈ O,Mm = Dm,m′ .Cm′,l.G
m
l,o.Oo (4)

where
• Gm

l,o embodies the geometrical transformation applied on
head which reported detection m at its detection time;

• Cm,l is equal to 1 if imaging voxel l is visible from
detecting voxel m through the collimator;

• D is a diagonal matrix composed of detection homogene-
ity for every detecting voxel obtained by calibration.

It is not efficient to compute and store all the model in a
matrix form. Therefore, distribution of the activity is obtained
by successive ray traced projections and back projections.

Fig. 2. Ray-tracing using front face and back face of the collimator.

Only the model of the detector is calibrated and stored,
because it represents the non-homogeneity of detectors and
signal readout, that can not be calculated. Sensitivity of each
sub-pixel is determined using a homogeneous source before
the examination. Every voxel m of the detecting space is thus
normalized depending on its sensitivity D(m).
The model of the collimator Cm,l is determined using straight
line equations. Projection of an object from the imaging space
is made by calculating equations of lines delimiting the area of
detecting voxels where from elements of the object are visible.
Indexes m of voxels included into these lines are memorized
and embodies the detecting volume of the imaging voxel l.
Back projection of the detecting space are likewise obtained
by calculating equations of lines delimiting the area of visible
imaging voxels l from a measurement m. VoR are calculated
using front face and back face of the collimator, as depict on
Fig. 2.

Events l obtained in the previous step are rotated and
translated depending on the position Gm of the head which
detected m at the detection time to get the list of final events
o composing the estimation.
Finally, we can write the model in the following form:

∀m ∈M,∀o ∈ O,Mm = D(m).Cm,Gm(o).Oo (5)

This partition reduces the complexity of the model, because the
detector model D(m) and the geometry model Gm(o) are now
bijective functions: projections and back projections through
these models lead to only one result per origin event. Only the
model of the collimator is still complex, but working spaces
are reduced: the size of the detecting space is divided by 200,
since detecting heads position is no more taken into account.
Moreover, using more possible orientations per head would
no more be problematic considering the size of the model.
Finally, computing projections and back projections on-the-fly
is faster because there is no need to store and access a sparse
matrix. Indeed, only voxels included in response volumes are
actually considered. Calculating and browsing null coefficients
is thus avoided.

C. Monte-Carlo Back Projections

Although models of geometry and detector have been sim-
plified, the model of the collimator is still complex. Additional
adjustments are made on it. In a systematic approach, back-
project through the collimator model requires calculating and
memorizing the complete list of imaging voxel included in
the Volume of Response (VoR) of the collimator for each



(a) Systematic voxel brows-
ing

(b) Monte-Carlo drawings

Fig. 3. Back projections methods through the collimator.

detecting voxel. We propose a more flexible approach using a
Monte-Carlo method, that consists in randomly picking some
events within the response volume of measurements through
the collimator, as illustrated on Fig. 3. The number of drawings
must be adjusted depending on the size of the volume of
response, to take into account the sensitivity of detecting
voxels trough the collimator.
The first advantage of this method is to avoid the problem

of interpolation of voxels partially included in the volume
response, as picked events are represented by floating points
in the imaging space. Spatial resolution is thus closer to the
optimum using this approach. Then, simulation results exposed
in the next section show that it is not necessary to pick
as many drawings as there is voxels in the volume to get
a precise result. We can thus save time if we are able to
determine in advance how many drawings are necessary to
correctly compute the reconstruction. Moreover, the number of
drawings per detection can be seen as an adjustable parameter
depending on the trade-off between computation time and
precision needed. Finally, back projection of each Monte-Carlo
drawn event can be run in parallel.

D. Partial Update

More could still be done on real-time processing by com-
puting partial preliminary updates during the reconstruction.
Events can be divided by groups, and one partial update is
got from each group. Updating made with (3) is decomposed
into the sum of contributions of each group :

O(n+1)
o =

O
(n)
o

N(o)
×
∑
g

 ∑
k∈Kg

Rmk,o∑
o′∈ORmk,o′ .O

(n)
o′

 (6)

where Kg is the gth group of events. In our approach, we
distribute events depending on their date. This approach is
very similar to Ordered Subset Expectation Maximization
(OSEM)[5], except that OSEM algorithm consists in sorting
events depending on their location. The problem of OSEM
algorithm is that it is not convergent, conversely to MLEM.
Nevertheless, results are still reliable. As it is showed with
simulation results in the next section, estimation is more

(a) Phantom (b) List mode MLEM 1 iteration

(c) List mode MLEM 3 iterations (d) List mode MLEM 5iterations

Fig. 4. Simulation results of List mode MLEM with 50k events for each
iteration.

reliable when using a large amount of events in each groups.
Nevertheless, more time will be necessary to get enough
measurements to compute several updates.
Indeed, as events are sorted depending on their date, these
method enables interesting results if contributions of each
group is used for next updates :

O(g+1)
o = O(g)

o +
O

(g)
o

N(o)
×

∑
k∈Kg

Rmk,o∑
o′∈ORmk,o′ .O

(g)
o′

(7)

Contributions can thus be computed separately to allow par-
allel computing, or one by one to use contributions between
each updates and avoid to compute several iterations on the
same events. It also avoid to store and replay events.

III. SIMULATIONS

A. List-mode Processing
A simulation tool has been developed to implement al-

gorithms proposed above on the configuration described in
introduction. Measurements were simulated from the phantom
given if Fig. 4a. Sizes of spheres of the phantom from the
smallest to the biggest are 4 mm, 6.5 mm, 9 mm, 11 mm, 15
mm and 17.5 mm. As the reconstructions is not manageable
in an acceptable time using classical MLEM, we directly
simulate the reconstruction using list-mode and on-the-fly
computing. Projections of resulting reconstructions are showed
on Fig. 4b, 4c and 4d for 1, 3 and 5 iterations on 50k
measurements. Spatial resolutions we get from 3 iterations is
thus between 6.5mm and 9 mm, that is consistent with the
intrinsic spatial resolution of the collimator (8 mm).
5 iterations of classical list-mode MLEM are necessary to get
a correct result. In the followings, this algorithm will be used
as baseline to assess method performances.

B. Monte-Carlo Back projection
To assess the method consisting in picking points in

the response volume of the collimator as it is developed



Fig. 5. Computation Time and quadratic Error for Monte-Carlo back
projections.

(a) Systematic browsing (b) 10 drawings per detection

(c) 100 drawings per detection (d) 300 drawings per detection

Fig. 6. Simulation results using Monte-Carlo back projections.

in the section II-C instead of memorize every voxel, we
compared computation times and estimations to those we
get using a systematic method, for 5 iterations of list-mode
MLEM. Estimations are compared using the Mean Square
Error (MSE) normalized to the maximum between resulting
estimation and result of systematic list-mode MLEM. Fig. 5
depicts the evolution of computation time (red curve) and
MSE (blue curve) with the number of drawings per detection.
Computing time for systematic browsing is 59.2 seconds
(green line on Fig. 5). The evolution of the MSE points
out that picking more than 100 events does not improve the
quality of the result. Computing time increases linearly with
the number of drawings.

Visually, Monte-Carlo back projections does not signifi-
cantly affect spatial resolution, but reconstruction is grainy
when the number of drawings is too low. Figure 6 confirms
that image quality gets better when more events are picked, up
to about 100 events. Then, no significant difference between
estimations is visible.
The number of necessary drawings depends on the aperture
angle of the collimator. In our configuration, the response

Fig. 7. Evolution of Mean Square Error with the number of Partial Updates.

volume for our collimator is on average 212 voxels per
measurement.

C. Partial update

Quality of results given by reconstruction with partial up-
dates as proposed in section II-D is very dependent on the
size of groups used to compute each update. To determine this
impact, we propose to compare results obtained from groups
of 50, 500, 5k and 16k events for partial updates to those we
get with 5 iterations of list-mode MLEM.

Evolution of MSE to the result from list-mode MLEM with
the size of groups is plotted on Fig. 7, for different total
numbers of events. It points out that there is an optimal size of
groups to get a similar result to the reference. Size of groups
is critical when the total number of events is low.
Fig. 8 illustrates the problems we get with a list of 50k events.
Projections of estimations obtained with 50 events for different
sizes of groups from 50 to 16k events are compared. Indeed,
results from reconstructions with big groups as in Fig. 8d are
similar to back projection, because there is not enough updates.
Conversely, for small groups as in Fig. 8a, estimation is grainy:
the algorithm overrates the activity on most likely voxels. The
granularity of reconstructions is worsen when there is a lot of
updates on small groups (green curve on Fig. 7).

These results highlight the necessity to have a sufficient
amount of information on each group to get a correct result.
Even if the reconstruction is no that faster in this case, we
benefit from intermediate estimations. Processing times for
different sizes of groups are given on table I. It smoothly
increases when using more groups because updating step is
more frequent. However, the difference is tinny and algorithm
is still between 3 and 4 times faster than 5 iterations of MLEM
algorithm.
As the quality of updates is linked to the amount of informa-

tion contained in each group, problem is getting harder when
the emitting object is noisy. The size of groups is thus to be
adapted depending on the noise and the compactness of the
emitting object.

D. Comparison of algorithms

Among enhancements proposed in this study, list-mode and
on-the-fly processing does not change the result and require



(a) 1000 updates with 50 events (b) 100 updates with 500 events

(c) 10 updates with 5k events (d) 3 updates with 16k events

Fig. 8. Simulation results using Monte-Carlo back projections.

TABLE I
COMPUTATION TIME USING PARTIAL UPDATE COMPARED TO LIST-MODE

MLEM RECONSTRUCTION WITH 5 ITERATIONS.

Total number of events Algorithm Computation time (s)
50k List-mode MLEM 59

Partial Update 20 - 22
100k List-mode MLEM 109

Partial Update 29 - 32
200k List-mode MLEM 207

Partial Update 49 - 55

less time because it is more adapted to our configuration.
Monte-Carlo back projection and partial update can also help
to quicken computing without any significant impact on the
quality of the reconstruction if parameters are adapted to
the situation. Previous sections helped to determine optimal
parameters for our configuration.

Table II presents computational times of different

TABLE II
PERFORMANCES OF PROPOSED ALGORITHMS.

Algorithm Computation time (s) MSE(%)
LIST-MODE MLEM 39.3 6.0

3 iterations
List-mode MLEM 59.2 4.3

5 iterations
List-mode MLEM 108.2 4.2

10 iterations
List-mode MLEM

5 iterations 24.2 4.4
100 MC Back projections

List-mode MLEM
5 iterations 40.1 4.3

200 MC Back projections
Partial Update 19.6 4.4

every 2.5k events
Partial Update

every 2.5k events 13.1 4.4
100 MC Back projections

Partial Update
every 2.5k events 15.3 4.3

200 MC Back projections

combinations of these enhancements and their impact on
faithfulness of results using the MSE to the distribution of
detected simulated decays.
Selected numbers of drawing on Monte-Carlo back projection,
and sizes of groups for partial updates, allows the same quality
of result than classical list-mode MLEM algorithm. Using
both together, computation is 4 times faster, and a new update
is available every 0.8 seconds. Updates can be computed
separately, that enables some parallel computing. This fast
availability is precious since it enables making a lot of
adaptations on configuration without making the examination
time longer, compared to list-mode MLEM algorithm that can
not allow changes on configuration faster than every minute.

CONCLUSION

In order to improve trade-off between their spatial
resolution and their sensitivity, we worked on adaptation of
the field-of-view. We studied a configuration usable for cardiac
examinations in which heads can be focused on precise areas
of the object to be imaged. Adapting head positions during the
acquisition requires knowing fast where to direct detecting
heads to get relevant information. Real-time computing
of the reconstruction is thus necessary to get preliminary
estimations of the object to process a lot of adaptations on
the configuration. Adjustments of MLEM algorithm have
thus be made to allow this real-time computing. List-mode
and on-the-fly processing are a reordering of calculations
and do not change the final result. Conversely, Monte-Carlo
drawings for back projection trough the collimator or partial
updates are approximations of MLEM algorithm, but enables
the same faithfulness. Algorithms mixing these enhancements
allow faster computation. The major advantage of partial
update is the availability of preliminary estimations during the
reconstruction to provide necessary information to adapt the
configuration. Subsequently, parallel computing enabled by
Monte-Carlo drawings and partial updates is to be exploited
to propose efficient reconstruction pipeline.
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