RTM RF Backplane Extensions for MicroTCA.4 Crates – Concept and Performance Measurements

Krzysztof Czuba Warsaw University of Technology, ISE

kczuba@ise.pw.edu.pl

20th Real Time Conference Padova, Italy, 06.06.2016

RF Signal Distribution in Multichannel Control Systems

- RF front end require distribution of tens precise LO / CLK / REF signals to RTM and/or AMC cards
- Impedance controlled lines and coax connectors
 - Tens of cables hanging in front of the crate very difficult cable management!

The First Idea – RTM RF Backplane in the MTCA.4 Crate

First RF Backplane Version – Assumptions and Problems

- Custom design for E-XFEL LLRF
- Single input with adapter board
- RF signals distributed to 8 slots
- LO and MO signal power splitting on board (careful RF design) (no flexibility)
- > 50 Ω matching of not used RF signals:
 - manually by putting loads on connectors (dummy load boards)
- EMI protection from the "digital world" (AMC Backplane)
- Improve system reliability
- Easier maintenance: no need to disconnect multiple cables during service

Further Development of RF Backplane Concept

- Empty areas behind front Power Module and MCH used for further extensions of MTCA.4 standard
 - eRTM concept
 - Rear Power Modules for eRTMs and µRTMs
 - Allows for significant reduction of control system size (removal of external LO and CLK signal sources)
- > RF signal distribution from slot #15 to all μ RTM slots
- > Automatic matching of unused RF signals
 - RF hot-plug (probably world's first)
- Necessary to introduce management over the Backplane

RTM Backplane – Final Concept Highlights

Fully compatible to the standard. No mechanical collision with standard RTM boards. Supported by crate manufacturers

- Hot swap functionality for RF signals. IPMI extension for RTM Backplane worked out with N.A.T.
- RTM Backplane is passive. All intelligence in modules -> great flexibility for users
- Developed a concept of extended RTM (eRTM) boards
- Redundant high performance rear power supply for analog applications and additional power for digital RTMs

Slots, eRTMs and Rear Power Supply Modules

eRTMs

- Offer system designers additional space (note that eRTMs are wider (6HE) than uRTMs (4HE))
- Designers can use 2 or 3 slots for one module
 - eRTMs are intended for applications requiring significant space for components like filters or precise temperature stabilization
- Backplane provides management, power supply and data links for eRTMs
- Slot 15 was designated for RF signal entry

eRTM #15 example. LO and CLK generator Courtesy: T. Rohlev, U. Mavric. See poster on Tuesday

Universal slot #15 test adaptor

Connector Zones on the RTM Backplane

uRFB Management and Rear Power Supply

- Management by MCH-RTM in slot #-1 and (option) #13
- Standard (AMC) management extended to the RTM side
- MCH-RTM can also provide fast CPU with direct links to AMC backplane
- FRUs with information about connectivity and power
- Rear PM can supply 4 x +12V to eRTMs and 12x +/- VV to µRTMs
- µRTM can use +/-VV from RTM Backplane or standard +12V from AMC
- <u>Economic use case</u>: power supply for eRTM in slot #15 from MCH-RTM (no Rear PM) but limited to max 25W
- Optional high voltage (~100 V, not on the RTM Backplane for safety reasons!) Rear PM for e.g. piezo driver application

Rear PM with 100V Piezo power supply

Simplified Block Diagram of RF Backplane Designed for XFEL LLRF

• 27 RF signals (optimized for 1.3 GHz but can work

up to 6 GHz)

- 22 CLK signals
- "Analog" power supply: +/-7 V for RTMs and +12 V for eRTMs
- Management and communication

RF and CLK Performance Optimization

> Required:

- min. 80 dB isolation of RF-to-RF and CLK-to-RF signals
- "as low as reasonably achievable" RF loss and phase drifts
- Reflections lower than -15 dB
- > Careful RF PCB design performed
 - 16 layer PCB
 - Hybrid design: RF substrate for RF and CLK lines, standard substrate for power supply
 - Large effort put in grounding (to minimize reflections, crosstalk, loss)
 - Optimization of power supply network (4 x 12V, 7A; 12 x 2 x +/- VV 2A) including control of return currents
 - 3D EM simulations of coaxial connectors to PCB interface

Automated Test Stand

 Time consuming RF measurements of RF and CLK performance

 Automated test stand and adapter boards were designed to allow fully automatic measurements and report generation

 ~400 VNA measurements needed for full test

- manually 1-2 days + 1 day for report generation assuming no human mistake is done...
- with test stand ~25 min. including report

VNA calibration board

Adapter board for precise Sparameter measurements

eRTM15 test board

uRTM test board

Performance Measurement Results (Example)

Reflections (red) and RF loss (blue) for the most distant slot

Table I: Measured Attenuation and Reflections of the Backplane @1.3GHz for LO, REF and CAL Lines

Slot	A _{REF} [dB]	Γ _{REF} [dB]	A _{LO} [dB]	Γ _{LO} [dB]	A _{CAL} [dB]	Γ _{CAL} [dB]
4	2.4	-24.3	2.9	-40.0	2.5	-26.1
5	2.1	-23.4	2.7	-20.5	2.4	-17.9
6	2	-20.4	2.3	-25.7	2.3	-22.4
7	2	-15.9	2.2	-18.7	2.1	-22.3
8	1.6	-22.5	2.2	-21.0	2.0	-19.0
9	1.6	-24.5	2.0	-23.0	1.7	-26.8
10	1.5	-16.0	1.9	-18.6	1.6	-18.8
11	1.4	-19.4	1.5	-22.4	1.5	-19.6
12	1.1	-16.2	1.4	-19.1	1.4	-30.0

Table I: Measured crosstalk between REF and LO lines @ 1.3 GHz, [dB]

		Aggressors										
		REF4	REF5	REF6	REF7	REF8	REF9	REF10	REF11	REF12		
Victims	LO4	93	109	95	97	115	105	105	112	113		
	LO5	103	102	106	93	114	101	109	109	112		
	LO6	102	95	93	113	119	112	106	111	117		
	LO7	100	102	104	97	113	104	111	109	113		
	LO8	95	102	109	103	97	106	106	113	114		
	LO9	95	97	111	111	115	93	107	108	109		
	LO10	97	100	114	112	118	111	103	109	105		
	LO11	95	111	112	114	113	102	107	95	109		
	LO12	103	105	108	106	109	101	107	109	93		

Phase Drifs

- Critical for LLRF applications
- PCB traces are sensitive to temperature and humidity variations on level important for LLRF
- Test board was designed and a method developed to calibrate out test cable drifts
- Measured phase drifts
 - by temperature are in range of 40 70 fs/°C p-p (~0.035 °/°C @1.3 GHz) for the longest line
 - by humidity $\sim 2 \frac{fs}{\%_{RH}}$
 - usually humidity changes by few tens %/_{day})
 - Expected drifts $10 20 \frac{fs}{N_{RH}}$ p-p during day

PICMG Standardization Process

- > All ideas and developments were base for PICMG standardization
- PICMG Hardware Group did a great job to collect it all, improve and significantly extend before putting into PICMG document
- PICMG document covers general RTM Backplane with MCH-RTM, eRTMs and Rear PMs, mechanics, protective covers and more
- Very impressive document: ~170 pages, 45 figures, 55 tables
- Close to release

Summary

- Compact solution integrated with the crate
- No collision with standard MTCA cards
- Reduces number of cable connections and improves reliability and maintainability
- Hot-swap for high-performance RF signals up to 6 GHz
- High-performance +/-V managed power supplies for RTMs
- eRTMs to increase number and size of modules
- Developed and tested successfully
- Still plan to do extensive performance tests with Rear PMs
- PICMG standard to be available soon

Thank you for attention!

