Implementing a ReboT

server on a MicroBlaze.

G.Varghese, L. Butkowski, R. Rybaniec, M. Killenberg, N. Shehzad, A. Dworzanski, K. Czuba

Abstract—Data acquisition over an IP network is convenient
for diagnostics, monitoring and control applications. The ReboT
protocol (Register Based Device Access Over TCP) extends the
ChimeraTK DeviceAccess library. It brings in hardware access
over TCP/IP. Using ReboT, the Python and Matlab bindings
provided by the library give application developers a convenient
way to access hardware over the network.

The ReboT server side is implemented on a MicroBlaze
softcore which runs on a Xilinx Spartan 6 FPGA with an AXI
Ethernet Lite Media Access Controller solution. We present
our experience implementing the code on the MicroBlaze using
FreeRTOS and the Netconn API of the LWIP stack and report
on the achieved data throughput.

I. INTRODUCTION

HE ‘REgister Based device access Over Tcp’ (ReboT)

is an in house payload format for TCP/IP that grew
form the need to communicate with the Temperature Monitor
and Control Board (TMCB). The TMCB is intended as a
data acquisition and control device with ADCs for monitoring
and DACs for control voltage generation. This board was
developed at DESY in collaboration with Instrumentation
Technologies[1]. It provides a 100 BASE-T Ethernet interface
for data transfer and a serial interface for board management.
On board processing is provided through a Xilinx Spartan 6
FPGA which hosts a Xilinx Microblaze soft core and a Xilinx
AXI Media Access Controller on it.

The interface to the ADCs and DACs on the TMCB is
exposed through a register space provided by the VHDL code
on the FPGA. The individual registers in this memory space
may be written to in order trigger specific actions, or they
may be read from to retrieve collected data. Having such
a register based interface to the hardware lets us integrate
with the ChimeraTK DeviceAccess library[2][3]. The list of
exposed register locations and their attributes, like size and
address offsets are made available to the library through a
DeviceAccess map file and this lets us access TMCB registers
easily in our C++, Python or Matlab code (Fig. 1).

This register space is made available by the ReboT server
running on the TMCB MicroBlaze. It maps payload over
TCP/IP, into instructions that indicate read or write on a
register of the VHDL register space of the TMCB. On the
DeviceAccess library side, we have a ReboT backend that
parses the response from the server received over TCP and
extracts requested information from it thus letting clients of
the DeviceAccess library interact with the TMCB registers.

Manuscript received on June 14, 2016

G. Varghese, L. Butkowski, R. Rybaniec, M. Killenberg are with DESY
Hamburg, Germany

A. Dworzanski, K. Czuba are with the University of Warsaw, Poland

Corresponding author email: geogin.varghese @desy.de

DeviceAccess mapfile
with register descriptions

i ReboT API Client

=
' - ChimeraTK | <€— | Application
. Ethernet —» DeviceAccess | —3» CH++/

Python /
Matlab
Gets access to all
TMCB registers

Interface

Register 1

TMCB

Fig. 1. TMCB access using ReboT and DeviceAccess library

II. REBOT SERVER ON THE MICROBLAZE

Use cases for the ReboT protocol involves single word
(4 bytes) writes for board control, single word reads and
multi word block reads from the hardware register space.
The ReboT server expects commands from its clients over
a TCP connection. These commands have the structure shown
in Fig. 2. The server processes received commands sequen-
tially, with the next command executed only after the current
command has finished processing and a response has been
sent to the client. This results in blocking calls on the the
DeviceAccess API when trying to access the TMCB registers.
The ReboT protocol in its current state is simplistic and
limited, though it currently works for our purpose. A quick
initial implementation of the server, based on the Xilinx Kernel
and the IwIP socket API gave single word read speeds of
around 19 ms and a TCP throughput of around 773 Kbits/sec.
However these numbers were found to be inadequate and the
firmware implementation was revised.

read_token | register_address | number_of_entries_to_read

write_token | register_address data_to_write

Fig. 2. Structure of ReboT commands

The revised MicroBlaze firmware implementation runs
FreeRTOS v8.2[4] as the embedded operating system and
uses the Netconn API of IwIP v1.4[5] for the network stack.
FreeRTOS provides a framework for implementing user appli-
cations on parallel tasks, with the possibility to assign priority
levels for individual tasks. For the revised implementation, the
TCP/IP thread of the network stack runs on a higher priority
task, with the ReboT server and the management console of
the TMCB running as applications in other lower priority
tasks. New applications are brought in to the firmware by

implementing them on separate tasks and integrating these
with the existing base firmware.

IwlIP offers three API variants to work with. These are the
Raw API, the Netconn API and the FreeBSD style socket API.
Any of these three API options may be used for application
development. The Raw API gives the best throughput, but is
not thread safe and was primarily intended to be used for micro
controller applications with no operating systems.The Netconn
API and FreeBSD style socket API are thread safe and are
convenient to use with an operating system like FreeRTOS
that supports threading. The FreeBSD style socket API gives
portable code compared to the Netconn API, but the Netconn
API can be used to access the stacks internal buffer pointers
which can be taken advantage of to gain better performance.
This was a motivation for preferring this API for the ReboT
server implementation.

The throughput of a TCP connection on the revised firmware
was measured using the iPerf tool[6] (Fig. 3). For this tool to
work, the server side should sink the received TCP payload
over the connection. This was realized by implementing an
iPerf dummy server on the MicroBlaze. This task accepts
TCP connections and discards the payload it receives. Using
this server, the throughput for our current TMCB hardware
configuration was measured on a 100 BASE-T interface. The
measured data throughput of a TCP connection is shown in
Fig. 3.

[ID] Interval Bandwidth
[3] ©0.0-60.1 sec 20.6 Mbits/sec

Transfer
148 MBytes

Fig. 3. Throughput of TCP connection captured using iPerf tool. Maximum
connection bitrate limited to 100 Mbits/sec.

TABLE I
AVERAGE TIME FOR READ AND WRITE ON TMCB REGISTERS THROUGH
THE DEVICEACCESS LIBRARY (INTERNALLY USES REBOT).

Old Firmware
(Xilinx kernel, IwIP)

Revised Firmware
(FreeRTOS, 1wIP)

Read 4 byte register 1.12 £ 0.01 ms 19.70 £ 0.01 ms
Write 4 byte register 1.15 £ 0.04 ms 19.75 £ 0.01 ms
Read 4096 byte register 5.52 £ 0.04 ms 59.80 &+ 0.01 ms

A comparison on read and write times between the reimple-
mented ReboT server and the initial implementation is shown
in Table I. It is observed that single word reads and writes
on the reimplemented version of the server are almost 20
times faster. Fig. 4 shows ReboT register access times as a
function of the register size for the reimplemented server.
Access times are in the order of 1-2 ms for register sizes
below 1460 bytes. The growth profile till this limit is flat.
This is because the fetched data is below the TCP Maximum
Segment Size of 1460 bytes and hence it can be sent over one
IP datagram, thus incurring only the minimal TCP/IP header
overheads. This is in contrast to the reads on larger registers,
where the access times tend to increase linearly because
of data fragmentation over multiple IP packets bringing in

increased header overheads. Fig. 5 shows the throughput of
the ReboT read command with the register sizes. Single word
reads give the lowest data transfer rates for the protocol while
multi word read requests achieve better transfer rates. The
maximum observed data rates for the protocol levels off at
around 900 KBytes/sec.

1000 ¢
: +
)
E
?
o +
. 100 ‘ i =
5 3
g 3
g +
8 +
[
£ 10 b + 4
) ¥ +
g +
< +
+
e
1 | | | | |
1 10 100 1000 10000 100000 le+06
Register size [Bytes]
Fig. 4. ReboT read times plotted against the register size
1000 E T T +\ ¥+ T+ F
F +
) +
& +
& 100 - : 4
< +
Q
B +
8 +
©
©
E 10 | + 4
3 3
> +
&
+
1 1 1 1 1 1
1 10 100 1000 10000 100000 le+06

Register size [Bytes]

Fig. 5. Transfer rate for different register sizes

III. SUMMARY AND FUTURE WORK

The discussion presents an overview of the work done
to set up a ReboT server on a Spartan 6 FPGA with the
Xilinx AXI Ethernet Lite Media Access Controller solution.
The MicroBlaze on the Spartan 6 used the IwIP stack with
FreeRTOS to implement a ReboT server. This allows the
ChimeraTK DeviceAccess library to perform single word
reads (4 bytes), single word writes and block reads on the
hardware over the network. The implementation was able to
achieve around 800 single word reads per second and a data
transfer rate of around 900 KBytes/sec for multi word reads
using the ReboT protocol. These observed values are almost 20
times better that our initial implementation and are sufficient
for our current needs.

REFERENCES

[1] Instrumentation Technologies http://www.i-tech.si/

(2]

(3]
[4]
[3]
(6]

N. Shehzad et al., Modular Software for MicroTCA.4 Based Control
Applications, These Proceedings, 20th IEEE Real Time Conference,
Padova, Italy, 2016

DeviceAccess: ChimeraTK core library: Data Acquisition on Hardware
devices. https://github.com/ChimeraTK/DeviceAccess

FreeRTOS: A Cross Platform Real Time Operating System
http://www.freertos.org/

IWIP: A Lightweight TCP/IP stack
http://savannah.nongnu.org/projects/lwip/

iPerf2: The network bandwidth measurement tool https://iperf.fr/

