Error detection, handling and recovery at the High Level Trigger of the ATLAS experiment at the LHC

Real Time 2016 9 June Padova

Mark Stockton
McGill University
on behalf of the ATLAS collaboration

Introduction

Slide 2 Mark Stockton

- Changes to the ATLAS trigger system for Run2
 - L1 (Level 1) detectors
 - FTK (Fast Tracker)
 - HLT (High Level Trigger)
 - Data streams

- Specific details
 - Debug streams
 - **HLT** errors
 - Live monitoring
 - Follow up
 - Recovery
 - Prevention/Testing

Data taking

Slide 3

- Run1:
 - 2009-2011 @ 7TeV
 - 2012 @8TeV: peak lumi 7.73x10³³ cm⁻²s⁻¹ recorded 21fb⁻¹
- Run2:
 - 2015 @13TeV: peak lumi 5.02x10³³ cm⁻² s⁻¹ recorded 4fb⁻¹
 - 2016 continue @13TeV
 - A slight pause due to the marten incident
 - Longer pause PS accelerator problems
 - LHC has progressed up to 2040 bunches
 - Set new record peak luminosity for the LHC

The ATLAS trigger system

Slide 4

The ATLAS trigger system

Slide 5

Mark Stockton

New for Run2

Slide 6 Mark Stockton

- Fast custom made electronics
 - Synchronous at 40 MHz with a fixed latency of 2.5 μ s
 - Output rate up to 100kHz

- L1Calo
 - Uses both the LAr (EM) and Tile (Hadronic) calorimeters
 - Triggers on electrons/photons, jets, missing/total energy
- L1Muon
 - Uses the TGC and RPC fast muon trigger detectors
- Both find regions of interest (ROI)

Level 1 Accept

Level 1 system

W McGill

- Fast custom made electronics
 - Synchronous at 40 MHz with a fixed latency of 2.5 μs
 - Output rate up to 100kHz

L1Calo Run2 improvements:

- Relative isolation and hadronic energy cuts
- Improved granularity in eta dependence of Et thresholds
- New hardware to improve the pileup suppression

L1Muon Run2 improvements:

- Additional feet chambers in barrel region and commissioning using Tile extended barrel region
- Coincidence logic to reduce rate from low p_⊤ particles (protons)

Mark Stockton

- Fast custom made electronics
 - Synchronous at 40 MHz with a fixed latency of 2.5 μs
 - Output rate up to 100kHz
- L1Calo
- L1Muon
- L1Topo
 - Being deployed in Run2
 → Used to keep L1 thresholds low
 - Decisions on FPGA within L1 latency
 - Use a variety of topological event selections between L1 objects
 - For more info see talk by Marek Palka
 - The ATLAS Level-1 Topological Trigger Performance

Angular Requirements $\Delta \eta, \Delta \varphi, \Delta R^2, \Delta \eta + \Delta \varphi$

Mass Requirements

$$M^{2}=2E_{T}^{1}E_{T}^{2}(\cosh \Delta \eta - \cos \Delta \varphi)$$

$$M_{T}^{2}=2E_{T}^{1}E_{T}^{miss}(1-\cos \Delta \varphi)$$

$$M_{CT}^{2}=2E_{T}^{1}E_{T}^{miss}(1+\cos \Delta \varphi)$$

Event Requirements $H_T = \sum p_T(jets)$ $H_{CT} = \sum p_T(central\ jets)$ $M_{eff} = H_T + MET$ $L1Topo\ MET$ Dedicated Algorithms

Calorimeter Ratio

Delayed Particles

- Also have L1 detectors for specific purposes:
 - Min-bias triggers
 - Beam conditions and luminosity
 - Forward detectors along the beam pipe

Level 1 system

Slide 9

Mark Stockton

- Fast custom made electronics
 - Synchronous at 40 MHz with a fixed latency of 2.5 μs
 - Output rate up to 100kHz
- L1Calo
- L1Muon
- L1Topo
- Other specific L1 detectors
- CTP (Central Trigger Processor)
 - Applies prescales
 - Take 1 event for every X events
 - Applies bunchgroups
 - Used to categorise collisions on LHC filling scheme
 - Applies deadtime veto
 - Used to protect the detector readout
 - Simple to protect from overlapping events in front end buffers
 - Complex to protect from bursts of triggers
 - New for Run2: the single CTP can be used by 3 "partitions" at once
 - Will be used to simplify scheduling testing and calibration runs with the CTP

Bunch crossing

See poster by Ioannis Maznas: The Associative Memory System Infrastructure of the ATLAS Fast Tracker

- Hardware in commissioning during 2016
- Reconstruct all tracks at 100kHz by using pattern matching
- Input from tracking detectors (IBL, Pixels and SCT)

Create a pattern bank from MC

- 1½ 12 11 19 18 16 15 Then in data match hits to the patterns
- The matched pattern then has track parameters
- All this information is then passed on to the HLT for faster processing

pattern bank

HLT (High Level Trigger)

Slide 11

<u> Mark Stockton</u>

- ROIB passing the L1 ROI's to the HLT
 - Upgraded to single PCI-Express (RobinNP) card meet the 100kHz
- The two levels of the HLT were merged in Run2:
 - Reduces complexity and duplicated data fetching
- HLTSV passes the L1 result and ROIs to the DCM
- DCM collects data fragments and passes to HLTPUs
- HLTPUs: execute HLT algorithms;
 - Tasks are forked to maximise memory sharing
- Algorithms mainly reconstruct in ROI, but can also do unseeded reconstruction for specific detectors
- The HLT algorithms are now closer to offline
 - → reduces rates at an early stage
 - Example improvement in algorithms: Tracking
 pattern recognition and data preparation run only
 once (fast tracking) and later refined tracking (precision tracking)
- Accepted events then sent by SFO to storage

Data streaming

de 12 🗆

- Stream: collection of events or event fragments within a dataset
 - Type decided by trigger result from the HLT
 - RAW data streams are generated at the SFO (data logger)
- All streams are inclusive in Run2, except for the debug stream
- Physics
 - Single stream (Main) used for most data analysis
 - Other small physics streams: for standby/cosmics/special runs...
- Express
 - Events for prompt reconstruction (part of calibration loop)
 - Subset (~2%) of physics_Main
 - Calibration/Monitoring
 - Use partial event building (PEB)Small event size allows high rate
 - Datascouting
 - Events stored only at HLT level,
 i.e. store calo jets reconstructed
 - by the HLT only For Trigger Level Analysis (TLA)
- → greatly increases statisticsDebug -
 - Focus of the next slides

HLT Errors

Slide 131

- The HLT is a complex system with improvements being added frequently
 - Also runs during ever changing detector and accelerator conditions
- With software validation we aim to not see errors online
 - But if we do miss something...
 - → important to keep the problem events for debugging
 - Typically the debug stream is <0.01% of data taking
 - → testing is then vital to make sure the issue is resolved
- The following slides will go through
 - How the debug stream is filled
 - How errors are reported online
 - How the follow up is carried out
 - How the events are recovered for physics analyses
 - How the software is validated

Debug streams

Slide 14

- Events without full trigger decision, due to an online failure
- Several streams grouped by failure type:
 - DAQ issues
 - Problems retrieving or receiving invalid data from a detector
 - ROIB: incomplete data fragment or inconsistent L1 identifier's in the ROIs
 - Late events which didn't arrive at SFO before closing a lumi-block of events
 - Lumi-block: 1 min time intervals of data taking
 - HLTPU crash where the application/node has severe problems

- Events without full trigger decision, due to an online failure
- Several streams grouped by failure type:

- HLT finds missing data/could not process the event
 - Level1 result fragment is empty
 - Inconsistencies in the CTP fragments
 - Problems recording the eventlnfo data
 - Problems recording the HLT result (or checking it post writing)

- Events without full trigger decision, due to an online failure
- Several streams grouped by failure type:

- HLT Error
 - A severe error which can cause an algorithm to abort the event processing
 - Will have a HLT result to identify the problem the particular algorithm had

HLT Error

7 Mark Stockton

 As an algorithm runs it passes error codes to the framework (steering) composed of three parts

Desired action:

- Continue processing of algorithm went correctly; move to next
- Abort Chain algorithm needs to be exited from as it hit a problem
 - E.g. can't read an ROI
 - Abort Event problem could affect subsequent algorithms
 - E.g. missing data
- Abort Job when problems suggest the algorithm is misconfigured
 - E.g. tool doesn't initialise

Explanation:

- Missing detector data
- Corrupted detector data i.e. it can't be decoded
- Missing feature an object needed by the current algorithm is missing from a preceding algorithm
- Timeout processing time goes over the limit
- Bad job setup i.e. algorithm miss-configuration
- Additional explanations are available for each algorithm

Overall input from the framework:

 To cover issues from the framework or general issues not particular to a single algorithm

Mark Stockton

- Events without full trigger decision, due to an online failure
- Several streams grouped by failure type:

Timeouts

- Configurable limits are set on how long an event can be processed for
- Soft timeout
 - Skip subsequent algorithms
 - Partial HLT result kept
- Hard timeout
 - Skipping takes too long force timeout

Slide 19 Mark

- Events without full trigger decision, due to an online failure
- Several streams grouped by failure type:

- HLTSV force accept
 - Catch all for any problems not covered by the above criteria
 - Event is re-assigned (by HLTSV) but the HLT algorithms are not run
 - Instead event automatically sent to debug stream

Live monitoring

Slide 20 Mark Stocktor

- HLT errors monitored by 24/7 control room shift crew
 - Debugging process begins whilst we continue to take data
- Errors are communicated via the message transfer service (MTS)
 - Subscriber applications can then filter to the messages of interest

- These store the error codes both per algorithm and for the framework
- Tools are used to draw shifters attention by flagging potential problems
- Trigger rates
 - Rates of all items/streams are monitored live
 - Make sure that the rate to the debug stream is small
 - Again extra tools in place to draw shifter's attention to large deviations

Mark Stockton

Search

- Many ways to analyse any problems offline
 - Shifters use an electronic logbook to record their observations
 - Daily emails produce a summary of:
 - Relevant HLT error messages from previous day
 - Amount of events written to debug streams
 - All the monitoring histograms and log messages/files can be viewed afterwards by applications or web-viewers
- Operational notes of known issues/procedures for the shift crew to be aware of are stored on Twiki
- Follow up with experts is then handled on JIRA
 - This issue-tracking software states per entry:
 - Type
 - e.g. bug, task, improvement
 - Severity
 - Components
 - e.g. relevant algorithm
 - Software release
 - Track both what software was affected and when it is resolved
 - Comments for discussion

Recovery

Slide 22

- Debug stream events can be recovered
 - Launched automatically
- Uses athenaHLT emulator of the online system
 - Replicates DAQ communication and HLT processing
- Performed with the identical configuration as online but relaxed timeout limits
 - e.g. prescales reproduced due to reseeding pseudo random numbers generators
- >90% successful
 - Especially in cases not linked to detector problems
 - If we fail to do so the relevant lumi-blocks are excluded from analyses
- Recovered events are written to specific recovery streams
 - Then ready for use in physics analysis

Prevention/Testing

Slide 23 |

Mark Stockton

• Testing and validation is vital, both when following up issues seen online and also while developing new features

- Latest trigger software tested with series of tests
- Use athenaHLT to run common actions
 - Run over data taken online
 - Example: have tests to swap the algorithm execution order
 → checks process of running over an event is fully reproducible

- Build a candidate trigger release
- Run over recent data
- From RAW data → Rerun HLT → Full reconstruction
 - Includes "cost" monitoring to check resource usage
 - Make sure no errors and that the results obtained are correct
 - Reprocessing signed off by physics signature experts
 - The combination removes mistakes almost fully

- Used to validate the new software or investigate problems
- Testbed
 - Partial replica of the HLT farm away from Point1
- Validation machines
 - At Point1 but not used for data taking
- HLT farm itself
 - Take/re-play data through the system

Summary

- ATLAS is successfully taking 13TeV data in 2016
 - Trigger operations are running well
 - Many upgrades operational (or in commissioning) to continue improving the performance despite the more challenging conditions in Run2
- Well established procedures for algorithm error reporting
 - Debug streams used to allow further analysis of the flagged events
 - Many monitoring and follow up procedures in place to limit problems
 - Automatic recovery successfully recovers most events
 - Preventative steps in place to validate the software well in advance of it being installed online
- Thank you for your attention

Backup

- Physics signature:
 - Defined as a group of closely related trigger chains:
 - Muons/B-physics
 - Electrons/photons
 - Jets/bJets/Met/taus
 - Minimum Bias
- Chain: one full L1 → HLT selection
 - Starting with a L1 item as seed each chain is organised in steps (Trigger Elements)
 - At any step it can be rejected
 - Each step executes a sequence of algorithms, typically Feature Extraction (FEX) and hypothesis testing (Hypo)
- If passes through all steps → event accepted
- ROIB passing the L1 ROI's to the HLT
 - The custom VME based ROIB was replaced with a single PCI-Express (RobinNP) card
 - Needed as the Run1 system could not operate at the 100kHz rate in Run2

