
Page 1 of 7

TECHNICAL UNIVERSITY OF MADRID

HANDS-ON IRIO-GPU

June 6th 2016. Real Time Conference

“Advanced data acquisition and processing applications using

NIRIO FPGAs-based technology and NVIDIA GPUs.

Integration in EPICS”

Authors: Julian Nieto

Sergio Esquembri

Mariano Ruiz

Page 2 of 7

Table of Contents

1 HANDS-ON IRIO-GPU ... 3

1.1 Objective .. 3

1.2 Material needed to execute this lab: .. 3

1.3 Steps ... 3

Page 3 of 7

1 HANDS-ON IRIO-GPU

1.1 Objective

Analyse and modify an application performing the data acquisition and processing of images

acquired by a cameralink framegraber (see Figure 1). The application is developed in C language

using IRIO library. The camera has been replaced by a cameralink simulator generating images.

PCIe 1.1

x4 1GB/s

Computer

NI PXIe 7966R +

NI1483 CameraLink

adapter module

NI PXIe Chassis 1062Q

EoSens_3CL
_MC3010

EDT PCIe8 Dva
camera link
simulator

Figure 1: Architecture of the image and processing system implemented with PXIe Technology

The C application acquire images from the FPGA-based framegraber implemented in the

FlexRIO device. The images are moved by DMA directly to a GPU and processed using an

algorithm implemented with CUDA software tools. The images acquired can be displayed using

a python script.

1.2 Material needed to execute this lab:

 Laptop with a ssh client in a Linux computer or applications like MobaXterm in a

Windows computer (you can download it from indico conference WEB Server).

 Wifi connection to private network

o SSID: RT2016-UPM key: rt2016upm

1.3 Steps

1. Connect to “short-course WIFI”.

2. Connect to IRIO_GPU system using the following command line or use the

MOBATERM application:

ssh –X rtsc<n>@192.168.1.104

mailto:shortc_n@192.168.1.

Page 4 of 7

n => 1..9

passwd: rtsc<n>.2016

3. Copy the compressed file /opt/h-on/h-on.tar.gz to your home folder. Decompress it.

4. Check that you have the following folder structure in your home folder:

bin

cuda_sharedlib

irio

src

scripts

show_img

Makefile

/home/<user>/h-on

5. Change to /home/<user>/h-on/src folder and open (using gedit or nano editor) the file

“FlexRIO_mod1483-7966-Imag-GPU.c”. This contains the source code of the

application developed using IRIO software.

6. Review the content in this file and identify the different C sentences with the following

flowchart.

Page 5 of 7

Check & Init
GPU Resources

Init IRIO
IMAQ-GPU Profile

Config 1483
Cameralink
Parameters

FPGA Start &
DMA Start

GetDMAImage

Process_GPU

Buffer_CPU <-
RAW_IMG &

Processed IMG

Nimg++

ReleaseDMAGPU

Display Image

Stop FPGA/DMA

Free FPGA/GPU
resources

No
Nimg < 10

DMA->GPU Sleep

Yes

Yes

No

Acquisition Loop

Figure 2: Flowchart of FlexRIO_mod1483-7966-Imag-GPU.c

7. Answer the following questions:

a. What is the GPU buffer size in bytes?

b. What is the CPU buffer size in bytes?

c. What is the C variable used as image counter?

d. How many images are processed?

e. Which image is shown? (acquired, processed, both)

8. Identify the serial Number of the RIO

rtsc0@localhost~$ lsrio.py

Page 6 of 7

You will see the different RIO devices installed in the computer. Ask the instructor which

is the serial number for the RIO device with the NI1483 adapter module.

9. Compile the application executing make in the project root folder.

rtsc0@localhost~$ make

Warning. Please call to the instructor in this point to guarantee that you

have exclusive access to hardware.

10. Before starting the application we need to run the cameralink simulator in order to send

images. The commands to run the cameralink simulator are this:

rtsc0@localhost~$ cd /opt/EDTpdv

rtsc0@localhost~$./clsiminit -u 0 -C -l -f

camera_config/256_8Tap.cfg -v 1000 -g 1000

rtsc0@localhost~$$./simple_clsend -u 0 -m -l 0 -i imagelist.txt

Warning. If you are not the first user running the lab it is possible that the

simulator is already running.

11. In the bin folder execute the application with this command:

rtsc0@localhost~$./FlexRIO_mod1483-7966-imag-GPU <S/N> 7966

<file>.raw

12. Run the program several times to see how you are acquiring and displaying the images

generated by the simulator.

Warning. Please release the use of the hardware system to .other people in

the short course

13. In this point you need to open the shared library with the GPU code implementing the

processing algorithms. Have a look to the content and identify the functions

implemented.

14. Modify the C source code file, in order to change the function performing the image

processing.

Page 7 of 7

 Once the modifications are saved, change to project root folder and execute

make.

 In this point your need exclusive access to the hardware again. Execute the

program to see the differences with the previous application.

	1 HANDS-ON IRIO-GPU
	1.1 Objective
	1.2 Material needed to execute this lab:
	1.3 Steps

